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During its tour of the Saturn system, Cassini performed two close flybys of Rhea dedicated to gravity
investigations, the first in November 2005 and the second in March 2013. This paper presents an estima-
tion of Rhea’s fully unconstrained quadrupole gravity field obtained from a joint multi-arc analysis of the
two Cassini flybys.
Our best estimates of the main gravity quadrupole unnormalized coefficients are J2 � 106 = 94

6.0 ± 13.9, C22 � 106 = 242.1 ± 4.0 (uncertainties are 1-r). Their resulting ratio is J2/C22 = 3.91 ± 0.10, sta-
tistically not compatible (at a 5-r level) with the theoretical value of 10/3, predicted for a hydrostatic
satellite in slow, synchronous rotation around a planet. Therefore, it is not possible to infer the moment
of inertia factor directly using the Radau–Darwin approximation.
The observed excess J2 (gravity oblateness) was investigated using a combined analysis of gravity and

topography, under different plausible geophysical assumptions. The observed gravity is consistent with
that generated by the observed shape for an undifferentiated (uniform density) body. However, because
the surface is more likely to be water ice, a two-layer model may be a better approximation. In this case,
and assuming a mantle density of 920 kg/m3, some 1–3 km of excess core oblateness is consistent with
the observed gravity. A wide range of moments of inertia is allowed, but models with low moments of
inertia (i.e., more differentiation) require greater magnitudes of excess core topography to satisfy the
observations.

� 2015 Elsevier Inc. All rights reserved.
1. Introduction

Discovered on December 23, 1672 by Giovanni Domenico Cas-
sini, Rhea is the second largest moon of Saturn, with a mean radius
of about 764 km.

Before Cassini’s arrival in the Saturn system, only the gravita-
tional parameter GM was known from the analysis of Pioneer and
Voyager data (Campbell and Anderson, 1989). Using this and the
estimated volume (from camera images), a bulk density of about
1200 kg/m3 was derived, relatively small and compatible with a
mixture of about 75% by mass water ice (density 1000 kg/m3)
and 25% rock-metal (density 3000 kg/m3).

During its mission in the Saturn system, Cassini performed four
close encounters of Rhea, of which only two were devoted to
gravity investigations. The first gravity flyby, referred to as R1,
according to the numbering scheme used by the Cassini project,
was performed on November 26, 2005, during the main mission,
and the second and last gravity flyby, referred to as R4, was per-
formed on March 9, 2013, during the Solstice mission. The main
orbital and geometrical characteristics of R1 and R4 are summa-
rized in Table 1, while Fig. 1 displays the ground track of the flybys,
for a time interval of about ±2 h around the closest approach (black
circles).

Radiometric data acquired during the first encounter (R1) were
used to estimate the gravity field of Rhea. A first estimate
(Anderson and Schubert, 2007) was obtained under the assump-
tion of hydrostatic equilibrium, i.e. constraining the unnormalized
gravity coefficients J2 and C22 to a ratio of 10/3. From this estima-
tion, by applying the Radau–Darwin relation the authors obtained
a normalized moment of inertia of about 0.3911 ± 0.0045 (a value
of 0.4 would imply a constant density interior). The authors con-
cluded that the satellite’s interior is a homogeneous, undifferenti-
ated mixture of ice and rock, with possibly some compression of
the ice and transition from ice I to ice II at depth.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.icarus.2015.09.022&domain=pdf
http://dx.doi.org/10.1016/j.icarus.2015.09.022
http://dx.doi.org/10.1016/j.icarus.2015.09.022
http://www.sciencedirect.com/science/journal/00191035
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Table 1
Main geometrical and orbital characteristics of R1 and R4 gravity fybys.

Values at C/A Unit R1 R4

Epoch (UTC) 26-NOV-2005, 23:50 09-MAR-2013, 19:40
Altitude (km) 502 999
Relative velocity (km/

s)
7.3 9.3

Inclination (�) 17 106
Latitude (�N) �10.2 18.8
Longitude (�E) �91.5 �176.2
Normal-to-Earth angle (�) 106 117
Sun–Earth–Probe angle (�) 113 128
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In parallel, the radiometric data acquired during R1 were inde-
pendently analyzed by the Cassini Navigation team (Mackenzie
et al., 2007) and by the Cassini Radio Science team (Iess et al.,
2007). Both analyses estimated the moon’s GM and quadrupole
gravity coefficients J2 and C22, obtaining different solutions, but
consistent at the 2r level, as a result of different analysis
approaches. The two approaches were then combined to obtain a
joint ‘‘best” unconstrained estimation of the quadrupole field
(Mackenzie et al., 2008). The solution obtained is not statistically
compatible with hydrostatic equilibrium, hence no useful con-
straint on Rhea’s interior structure could be imposed. Hydrostatic
equilibrium was also ruled out by applying this constraint to the
estimated quadrupole field coefficients, and this led to a significant
degradation of the orbital fit at closest approach. To explain the
non-hydrostatic ratio J2/C22, the authors theorized that a large col-
lision occurred after the completion of the thermal evolution of the
satellite, causing a redistribution of mass and a reorientation of the
tidal bulge.

More recently Anderson and Schubert (2010) stated that the
differences in the previously published gravity fields are probably
caused by a mis-modeling of the non-gravitational acceleration
acting on Cassini caused by anisotropic thermal emission. To avoid
this issue, these authors restricted the analysis to a subset of data
around the closest approach (±2000 s), where ‘‘the information
from Rhea’s quadrupole gravitational field is confined”. They
obtained a new solution in agreement with Anderson and
Schubert (2007), using the hypothesis of hydrostatic equilibrium.
Fig. 1. Cassini ground track on Rhea during R1 and R4, consid
Moreover, these authors concluded that non-hydrostaticity is not
supported by the data.

The different estimations of J2 and C22 published to date are
shown in Fig. 2. To resolve these discrepancies, a second and final
gravity flyby was planned in Cassini’s Solstice. No other flybys of
Rhea are scheduled in the Cassini mission. R1 was characterized
by a very low inclination, about 17� at the closest approach (C/A),
in order to de-correlate the estimation of J2 and C22, while R4
was designed to be nearly polar, with a high inclination at C/A,
about 106�. However, the C/A of R4 was about 999 km, twice as
high as R1 (about 502 km), thus significantly reducing the informa-
tion content about Rhea’s quadrupole gravity field in this second
flyby. The Sun–Earth–Probe (SEP) angle was larger than 110� dur-
ing both encounters, thus range-rate measurements were only
slightly affected by the harmful effect of solar plasma.

This paper is organized as follows: Section 2 describes the data
analysis approach for the estimation of Rhea’s gravity field, along
with the spacecraft dynamical model, and the data selection and
calibration procedure. Section 3 provides a geophysical interpreta-
tion of the results, by means of a combined analysis of Rhea’s esti-
mated gravity and topography. Finally Section 4 summarizes our
findings and conclusions.
2. Gravity analysis

2.1. Introduction

The determination of the gravity field of a celestial body plays a
crucial role in the investigation of its internal composition, struc-
ture and evolution, because it provides one of the very few direct
measurements of its internal mass distribution, even if the inver-
sion process is not unique.

The gravity field of Rhea was precisely determined by recon-
structing the trajectory of Cassini during the two close encounters
of the satellite. The main observable quantity used in the gravity
estimation was the spacecraft range-rate, obtained from the fre-
quency shift due to the relativistic Doppler effect, averaged over
a count time of 60 s, of a highly stable microwave carrier transmit-
ted from an Earth ground station to the spacecraft, that coherently
retransmits the signal to Earth by means of a precise transponder.
ering a time interval of ±2 h around the closest approach.



Fig. 2. Previously published values of Rhea’s quadrupole coefficients J2 and C22.

Table 2
Expected DV due to Rhea’s gravity during R1 and R4. The reference values are:
GM = 153.9398 km3/s2, J2 � 106 = 931, J3 � 106 = 25.

Contribution Unit R1 R4

DV(GM) (m/s) 16.7 9.4
DV(J2) (mm/s) 5.6 1.6
DV(J3) (mm/s) 0.09 0.02
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Range observables were not used in the analysis because they are
of very limited use in the estimation of gravity fields.

During a close flyby, the spacecraft velocity variations caused by
the main terms of the gravity field harmonic expansion are approx-
imately (Iess et al., 2014a):

DVðGMÞ � GM
rV

ð1Þ

DVðJ2Þ �
GM
rV

R
r

� �2

J2 ð2Þ

DVðJ3Þ �
GM
rV

R
r

� �3

J3 ð3Þ

where M is the satellite mass, r is the radial distance at closest
approach, R is the satellite radius, V is the flyby velocity and G is
the gravitational constant. Using the geometrical values at C/A
reported in Table 1 and the gravity coefficients of Mackenzie et al.
(2008) the expected velocity variations were computed and are
shown in Table 2. In this simplified analysis a conservative upper
bound of J3 � 106 = 25 was used, following Mackenzie et al. (2008).

The Cassini radio science subsystem, along with the ground sta-
tions of NASA’s Deep Space Network (DSN), allows a tracking accu-
racy in the spacecraft’s velocity variations of about 0.02–0.09 mm/s
on a time scale of 60 s, depending mainly on the Sun–Earth–Probe
angle (Iess et al., 2014b).

This accuracy is well below the expected spacecraft’s velocity
variations induced by Rhea’s GM and J2 during R1 and R4, while
it is comparable to the upper bound contribution due to J3.

2.2. Dynamical model

To correctly estimate the orbit of Cassini, the dynamical model
implemented in the orbit determination program must take into
account all non-negligible accelerations acting on the spacecraft.

The implemented dynamical model includes the point-mass
relativistic gravitational acceleration exerted by all the main Solar
System bodies and the main satellites of Saturn. The gravitational
parameters and state vectors of the planets, the Sun, the Moon
and Pluto were obtained from JPL planetary ephemerides DE430
(Folkner et al., 2014). The gravitational parameters and a priori
state vectors of Saturn and its main satellites were obtained from
Saturn’s satellites ephemerides, SAT355, provided by the Cassini
Navigation Team by fitting a large number of radio, astrometric,
and optical data (Jacobson et al., 2006) (available at ftp://ssd.jpl.na-
sa.gov/pub/eph/satellites/).

The dynamical model also included the gravitational accelera-
tion due to the even zonal spherical harmonics of Saturn from J2
up to J8, whose updated values were provided by the satellite ephe-
merides, along with an updated model of Saturn’s rotation. Rhea’s
gravity field was modeled using a degree-2 spherical harmonics
expansion, which was the minimum degree field capable of fitting
the data at the noise level, without clear signatures. Given the very
small orbital eccentricity (about 0.001), the periodic tidal effects of
Saturn on Rhea were neglected: in this condition the tidal bulge is
almost constant, and the quadrupole coefficients J2 and C22 are a
function only of the secular Love number kf.

Given the very small eccentricity, Rhea is considered to be in
synchronous rotation around Saturn, with the spin axis normal to
the orbital plane and prime meridian always oriented toward
Saturn. The rotational model adopted was based on the latest coor-
dinate orientations adopted by the IAU (Archinal et al., 2011), with
small corrections applied to obtain a better fit of Cassini and other
astrometric data. The adopted Rhea rotational model is reported in
Eqs. (4)–(6).

a0 ð�Þ ¼ 40:347� 0:17089132T � 2:958 sin hþ 0:076 sin2h ð4Þ
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d0 ð�Þ ¼ 83:550� 0:01277063T � 0:332 cos hþ 0:004 cos 2h ð5Þ
W ð�Þ ¼ 235:16þ 79:69005069dþ 2:941 sin h� 0:077 sin 2h ð6Þ
where a0 and d0 are the right ascension and declination of the north
pole with respect to EME2000, respectively, W is the angle mea-
sured easterly along the body’s equator between the prime merid-
ian and the ascending line of nodes, T is the time measured in
Julian centuries (36,525 days) past J2000, d is the time measured
in days past J2000, and h is a nutation–precession term given by
Eq. (7).
h ð�Þ ¼ 9:151048þ 1004:6342250T ð7Þ
A dynamically defined, perfectly synchronous, rotational model

was also used, but the solution was not affected significantly.
The dynamical model also included the most important non-

gravitational forces acting on Cassini during the flybys: the solar
radiation pressure (SRP) and the thermal thrust. Both accelerations
were described by the same models adopted by the Cassini naviga-
tion team and whose parameters were estimated using cruise and
tour data.

The SRP is caused by momentum transfer between the space-
craft and the photons hitting its surface. In general a proper mod-
eling of this acceleration is very difficult but, during tracking
passes, Cassini keeps the large High Gain Antenna (HGA) pointed
to the Earth, shadowing the spacecraft bus. Hence, during gravity
flybys the total frontal area exposed to the Sun is nearly constant,
resulting in a constant acceleration on the order of 5 � 10�13 km/s2

(Di Benedetto et al., 2009).
During tracking passes, SRP is essentially a function of the

thermo-optical coefficients of the HGA, whose value has been com-
puted from the readings of two temperature sensor mounted on
the HGA backside, using a simple thermal model of the element
(Di Benedetto et al., 2009). In order to assess the effect of an imper-
fect knowledge of the HGA thermo-optical coefficients their uncer-
tainty was taken into account in the computation of the formal
covariance of the solution. In particular, using a conservative
uncertainty equal to 100% of the value, the solution covariance
increases by a negligible amount.

The thermal thrust is caused by an anisotropic thermal emis-
sion of Cassini, and in particular caused by the thermal heat gener-
ated by the three onboard Radio-isotope Thermal Generators
(RTG). Due to the spacecraft geometry, the main effect is an accel-
eration along the spacecraft Z body-fixed axis (which is the HGA
boresight axis) of about 5 � 10�12 km/s2 (Di Benedetto et al., 2009).

The RTG-induced acceleration is modeled using a simple expo-
nential model:
AðtÞ ¼ A0e�bðt�t0Þ ð8Þ
where A(t) is the thermal acceleration vector at time t, in body-fixed
coordinates, A0 is the spacecraft thermal acceleration at the refer-
ence epoch t0, and b is the time scale of the exponential law, which
derives from the 87.7-year half-life of 238Pu used as nuclear fuel in
the RTGs.

The magnitude of the RTG reference acceleration A0 has been
estimated during the cruise phase to a 3% uncertainty for the radial
component (Di Benedetto et al., 2009).

The force due to Saturn’s thermal radiation incident on Cassini
was neglected, because the resulting acceleration is on the order
of 10�16 km/s2, increasing up to 5 � 10�15 km/s2 near Saturn peri-
center (Di Benedetto et al., 2009), i.e., about three orders of magni-
tude smaller than the RTGs acceleration.
2.3. Data selection and calibration

During the encounters, Doppler data at X (8.4 GHz) and Ka band
(32.5 GHz) were acquired by the antennas of NASA’s DSN at the
three complexes of Goldstone, Madrid and Canberra. In addition
to data obtained around the closest approach, the analysis also
used data obtained up to two days before and after the closest
approach, during standard navigation tracking passes. The addi-
tional data allow an improvement of the orbit determination, in
particular the estimation of Rhea’s ephemerides and Rhea’s GM,
because of the stronger constraints that are imposed on the rela-
tive trajectories between Cassini, Rhea and Saturn.

It is important to note that the closest approach of R1 was
tracked only in three-way mode, meaning that the receiving and
transmitting stations were different. This represents a sub-
optimal condition, due to the possible delay between the reference
oscillators of the two different uplink and downlink stations. Dur-
ing R4, the closest approach was tracked in two-way mode.

Dual frequency X-band uplink and Ka-band downlink (X/Ka)
Doppler data were preferred to the standard X/X data when avail-
able, to reduce the effects of the dispersive noise sources, mainly
the solar corona and the Earth ionosphere. Two-way Doppler data
were preferred to three-way data in the same band when both
were available, to remove the errors due to the clock synchroniza-
tion between the uplink and downlink ground stations.

When only two-way X/X data and three-way X/Ka data were
available, the selection was made on a case by case basis.

When available, the wet path delay due to the Earth’s tropo-
sphere was calibrated using measurements from advanced water
vapor radiometers (Bar-Sever et al., 2007). When not available,
the Earth’s troposphere was calibrated using a combination of
weather data and dual frequency GPS measurements.

2.4. Estimation

Data analysis was carried out using two different approaches,
producing a multi-arc solution (SOL1) and a global solution (SOL2).

SOL1 was obtained using JPL’s orbit determination program
MONTE (Mission Analysis, Operations, and Navigation Toolkit
Environment) and a multi-arc approach, in which radiometric data
obtained during non-contiguous orbital segments, called ‘‘arcs”,
are jointly analyzed to produce a single solution of a set of ‘‘global”
parameters, which do not vary with time.

MONTE is the new orbit determination software developed by
JPL to replace the Orbit Determination Program (ODP) and it is
now used for the operations of all NASA’s space missions managed
by JPL. MONTE and ODP share the same mathematical formulation
(described in detail in Moyer (1971, 2000)) which, apart from nav-
igation, proved successful also for radio science data analysis.

The a priori values of GM, J2, C22 and S22 were retrieved from
Mackenzie et al. (2008). The a priori values of C21 and S21 were
set to zero. In order to avoid constraining the estimation, the a pri-
ori uncertainties of the GM and the estimated quadrupole coeffi-
cients were set to at least one order of magnitude larger than
their formal uncertainty. No hydrostatic equilibrium constraint
between J2 and C22 was imposed.

To properly fit the radiometric data, an updated state vector of
Rhea at a reference epoch was estimated, and the ephemerides of
all main Saturn satellites were updated by numerically integrating
the equations of motion, in order to keep constant the mass and
the trajectory of the system’s center of mass. The a priori values
for the Rhea state were retrieved from the Saturn satellite ephe-
merides SAT355.

For each arc, a separate initial condition for the Cassini state
vector was estimated. The a priori values were obtained from the
reconstructed trajectory provided by the Cassini Navigation Team.



Fig. 3. Range-rate residuals around the closest approach of R1 (dashed vertical line), in mm/s. The RMS is about 76 lm/s.
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(The updated Cassini trajectory Spice kernels are available at
ftp://naif.jpl.nasa.gov/.)

The residuals were weighted on a pass-by-pass basis using their
own RMS value.

Solution SOL2 was made using JPL’s original orbit determination
program, the ODP. Moreover, it was obtained as part of the ongoing
global analysis that seeks to determine the satellite ephemerides,
Saturn’s rotational model, and the gravitational parameters and
gravity fields of Saturn and it major satellites. The global analysis,
described in detail in Jacobson et al. (2006), utilizes an extensive
data set that includes: Earth-based and Hubble Space Telescope
astrometry, satellite mutual events, Saturn ring occultations, imag-
ing from the Voyager and Cassini spacecraft, and radiometric track-
ing of Pioneer 11, Voyager, and Cassini.

As in the SOL1 solution, the Doppler data that are sensitive to
the gravity parameters are weighted pass-by-pass at the RMS of
their residuals. However, the data are pre-processed to remove
the correlation between data points caused by scintillation in the
solar plasma, assumed to be the dominant noise source and having
a spectrum that follows the Kolmogorov power law.

2.5. Results

Figs. 3 and 4 plot the post-fit residuals of the tracking passes
around the closest approaches of R1 and R4. The residuals do not
show any evident signature around the closest approach, the mean
is approximately zero and the RMS are about 76 lm/s for R1 and
about 17 lm/s for R4.

Fig. 5 shows the different estimations of Rhea’s unnormalized J2
and C22 in the J2–C22 plane, along with their 1-r error ellipses,
compared to the results published in Mackenzie et al. (2008) and
Anderson and Schubert (2010). As a reference, Table 3 collects all
the estimated gravity coefficients for all the different solutions dis-
played in Fig. 5.

Although obtained with two independent analyses and follow-
ing different approaches, SOL1 and SOL2 are statistically compati-
ble: the difference between the estimated values of J2 and S22 is
less than 1-r, while the difference in the estimates of C22 is within
3-r. Moreover, both solutions are statistically compatible with
Mackenzie et al. (2008). This provides strong evidence of the relia-
bility and robustness of the solution. However, the discrepancy
with Anderson and Schubert (2010) is statistically significant,
being larger than 3-r and 5-r for J2 and C22, respectively. Recall,
however, that the (Anderson and Schubert, 2010) solution was
obtained by constraining the hydrostatic ratio J2/C22 to 10/3.
Applying the same condition, our solution becomes fully compati-
ble with Anderson and Schubert (2010), but the residuals show a
large signature at the closest approach of R1, in a similar way as
Mackenzie et al. (2008). Moreover, considering only a time interval
of ±15 min around C/A, where almost the entire quadrupole field
signal on the range-rate is concentrated, the RMS of the residuals
increases by about 56%, from 64 lm/s to 100 lm/s, a strong indica-
tion of a wrong dynamical model. Given the larger altitude at the
closest approach of R4, applying the hydrostatic constraint the
residuals of that pass do not show any evident signature, while
their RMS increases only slightly, from 17 lm/s to 18 lm/s.

From MacCullagh’s theorem the quadrupole gravity coefficients
are related to the body’s inertia tensor. In particular, J2 and C22 are a
function of the differences between the diagonal terms, while C21,
S21, and S22 are a function of the off-diagonal terms, which are null
in a frame of principal axes of inertia.

Under the assumption of small rotations, C21 and S21 are related
to a misalignment between the assumed spin axis and the real
maximum inertia axis, while S22 is related to a misalignment
between the adopted reference frame and the principal axes frame
around the spin axis.

The estimated values of C21 and S21 are null within 2-r, as
expected, while S22 is slightly larger, being about 3-r away from
zero. However, this proved to be due to the particular choice of
the adopted Rhea-fixed reference frame, as shown in the following.
Indeed, Rhea’s prime meridian used in the model and the Saturn-
pointing direction were found to be misaligned by about 3�, prob-



Fig. 4. Range-rate residuals around the closest approach of R4 (dashed vertical line). The RMS is about 17 lm/s.

Fig. 5. Estimated J2 versus C22 and formal 1-r uncertainty ellipses for the different approaches described in this paper. The most recent published values are also shown as
reference. Anderson and Schubert (2010) solution was obtained by constraining the J2/C22 ratio to the hydrostatic value 10/3.
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ably because the former was retrieved using different Satellite
ephemerides and Rhea’s orbit was updated as part of the fitting
process. Instead, using a perfectly synchronous frame, dynamically
defined using Rhea’s updated orbit, S22 decreases becoming null
within 2-r, while C22 increases in a statistically non-significant
way. Therefore, there is a good alignment within uncertainty
between the principal inertia axis of Rhea and a synchronous rota-
tional state. Rhea’s quadrupole is dominated by J2 and C22, as
expected by a satellite in synchronous rotation around its planet.
However, the ratio J2/C22 is 3.91 ± 0.10 for SOL1 and 4.22 ± 0.19
for SOL2, which are equivalent to each other at the 2-r level and
more than 5-r away from the hydrostatic value of 10/3. Therefore
Rhea’s gravity field is significantly non-hydrostatic, meaning that
the moment of inertia cannot be inferred directly from either J2
or C22 using the Radau–Darwin approximation. Estimating the
moment of inertia directly from the J2 or C22 coefficients of SOL1



Table 3
Estimated values and 1-r formal uncertainties of Rhea’s quadrupole gravity unnormalized coefficients for the different approaches described in this paper compared to the
results published in Mackenzie et al. (2008) and Anderson and Schubert (2010). Mackenzie et al. (2008) did not provide the correlation between J2 and C22, a zero value was
assumed. Anderson and Schubert (2010) solution was obtained by constraining the J2/C22 ratio to the hydrostatic value 10/3. A priori values and uncertainties used for SOL1 are
also shown in the first column.

Unit SOL1 (a priori) SOL1 SOL2 Mackenzie et al. (2008) Anderson and Schubert (2010)

J2 (�106) 930 ± 600 946.0 ± 13.9 957.0 ± 20.3 931.0 ± 12.0 892.0 ± 1.6
C21 (�106) 0 ± 300 �19.9 ± 11.0 0 ± 0.0 0 ± 0.0 0 ± 0.0
S21 (�106) 0 ± 300 23.5 ± 21.3 0 ± 0.0 0 ± 0.0 0 ± 0.0
C22 (�106) 240 ± 250 242.1 ± 4.0 227.0 ± 6.4 237.2 ± 4.5 267.6 ± 4.9
S22 (�106) 0 ± 250 �15.3 ± 5.0 �14.9 ± 5.0 3.8 ± 3.8 0 ± 0.0
J2/C22 3.9 ± 4.8 3.91 ± 0.10 4.22 ± 0.19 3.92 ± 0.09 3.33 ± 0.0
Corr J2 � C22 0.0 �0.34 �0.58 0.0 (N/A) 1.00
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yields incompatible and unrealistic values of about 0.40 and 0.38,
respectively.

As pointed out by Anderson and Schubert (2010), errors in the
thermal acceleration model may produce biases in the estimation
of the gravity coefficients. In particular, a relatively high correla-
tion (about 0.71) between Rhea’s J2 and the radial component of
the thermal acceleration was found. To take into account this pos-
sible error source, an updated value of the reference thermal accel-
eration vector was estimated, using a 5% a priori uncertainty for the
radial component, and a 10% a priori uncertainty for the non-radial
components.

The estimated values of the thermal acceleration are compatible
within 1-r with the a priori values, which were adopted by the
Cassini navigation team. The formal uncertainty in the radial com-
ponent is 3%, while the uncertainties in the other components are
equal to the a priori value of 10%. Therefore, using data collected
during Rhea’s flybys, only the knowledge of the radial component
of the thermal acceleration could be improved, because Doppler
measurements are directly sensitive only to velocity variations
along the line of sight.

To test the stability of the solution the a priori uncertainties of
the thermal accelerations were increased to 100% of their a priori
Fig. 6. Comparison of observed surface topography (blue square and large crosshairs, rep
match the measured gravity for the models discussed in Section 3 (each shown with cross
the homogeneous interior case, the shape was determined via Eq. (10). For the spheric
hydrostatic core (hyd-core) cases, the core shape, Hc

lm , was determined using a theory-of
mantle thicknesses (d). Corresponding normalized moments of inertia (C=MR2) are also
surface topography expected for a hydrostatic two-layer body is indicated for various no
references to color in this figure legend, the reader is referred to the web version of thi
value, which can be considered a conservative upper bound. Rhea’s
J2 and C22 change by less than 2-r, their formal uncertainty
increase by about 25% and 7%, respectively, and the ratio J2/C22
becomes 3.85 ± 0.11, still 4.8-r away from the hydrostatic value.
Therefore, we conclude that even a modelization error in the ther-
mal acceleration of 100% is not sufficient to absorb the excess of
the J2/C22 ratio with respect to the hydrostatic value.

3. Interpretation

There are a number of ways to explain the excess oblateness
(greater than hydrostatic J2/C22 ratio) in Rhea’s gravity field that
are consistent with the observed shape, which has been deter-
mined via analysis of limb profiles (e.g., Thomas et al., 2007;
Thomas, 2010; Nimmo et al., 2011). Incorporating the latest avail-
able data (Thomas, pers. comm.), we adopt for this analysis a best-
fitting triaxial ellipsoid with semi-axes:

a ¼ 765:68� 0:25 km
b ¼ 763:60� 0:25 km
c ¼ 762:86� 0:15 km

ð9Þ
resenting 1r uncertainties in the shape model) against the topography required to
hairs illustrating the 1r uncertainties propagated from the SOL1 gravity model). For
al core case, the shape was determined via Eq. (11), with Hc

lm set to zero. For the
-figures approach for a two-layer fluid body (e.g., Tricarico, 2014), assuming various
given in parentheses. Finally, the geoid was obtained via Eq. (12). For reference, the
rmalized moments of inertia along the dashed black line. (For interpretation of the
s article.)
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from which we obtain the unnormalized degree-2 shape coeffi-
cients: J2 = 1190 ± 260 m and C22 = 350 ± 120 m (uncertainties are
all one-sigma) (blue square and crosshairs in Fig. 6). The large
uncertainties result from Rhea’s relatively small tidal/rotational dis-
tortion and rough topography. The shape is not as well determined
as the gravity; for instance, the topography coefficients are
consistent (within error) with a hydrostatic body, while the gravity
coefficients are not.

In the analysis that follows we will assume that the degree-2
coefficients provide a record of the time the shape and gravity were
‘‘frozen in”. We do not consider the possibility that these coeffi-
cients were modified by later processes, such as the formation of
impact basins. Most such basins are sufficiently small that they
will not have an appreciable degree-2 signature. Tirawa represents
a possible exception, but we do not consider this issue further here.

We first take the simplest case of a homogeneous, uniform den-
sity Rhea. For a body of uniform density, it can be shown (Jeffreys,
1976; Hemingway et al., 2013; Iess et al., 2014a) that the shape
required to explain the observed gravity is given by

Hlm ¼ ð2lþ 1ÞR
3

Glm ð10Þ

where R is Rhea’s mean radius, and Glm and Hlm are spherical har-
monic coefficients of degree l and order m, representing the dimen-
sionless gravitational potential and the topography, respectively.
The green circle and crosshairs in Fig. 6 illustrate the topography
coefficients obtained from Eq. (10), representing the shape required
for a homogeneous Rhea to match the observed gravity field (for
clarity, we use only SOL1 for the remainder of this analysis; results
are not significantly different when we use SOL2 instead). The large
uncertainties in the shape allow for the possibility of a homoge-
neous Rhea (we will discuss this issue further below). However,
because the surface is likely primarily water ice (Clark and
Owensby, 1981; Stephan et al., 2012) we next consider a two-
layer model consisting of an H2O mantle overlying a denser core.
Of course, as soon as the assumption of homogeneity is abandoned,
the problem becomes non-unique. Nonetheless, below we focus on
the two-layer model because it is relatively generic, and also consis-
tent with the inferred structures of differentiated icy satellites such
as Enceladus (Iess et al., 2014a).

In general, and setting aside the point mass term, the dimen-
sionless gravitational potential coefficients for a two-layer body,
referenced to radius R, assuming constant density in each layer,
is given by a generalization of Eq. (10) (e.g., Lefevre et al., 2014):

GlmðRÞ ¼ 3
ð2lþ 1ÞR�q qmH

s
lm þ DqHc

lm
Rc

R

� �lþ2
" #

ð11Þ

where the superscripts on the Hlm terms refer to the surface (s) and
core (c) topographies, �q is Rhea’s bulk density (1236 kg/m3), qm is
the mantle density, which we take to be 920 kg/m3, Dqð¼ qc � qmÞ
is the density contrast at the core–mantle-boundary, and Rc is the
mean core radius. Hence, the observed gravity (Glm) can be accom-
modated by a combination of core and surface topographies.

If we assume zero core topography (i.e., a spherical core), then
significant surface topography (mass anomalies at the top of the
H2O mantle) would be required to account for the J2 and C22 terms
in the observed gravity field. Fig. 6 illustrates that this scenario (red
triangle and crosshairs) is not compatible with the observed shape
at the one-sigma level, although it remains compatible at the two-
sigma level. The case of a spherical core is not meant to be realistic
but rather to serve as a point of reference for subsequent
discussion.

The addition of topography at the core mantle boundary would
contribute additional mass anomalies that, if placed in-phase,
could reduce the need for large surface topography to account
for the observed gravity field. We start by assuming a weak (fluid)
core and relax this assumption below. Taking a theory-of-figures
approach (Murray and Dermott, 1999; Tricarico, 2014), we com-
pute the expected hydrostatic core topography (Hc

lm) and use Eq.
(11) to compute the surface topography (Hs

lm) required to account
for the remainder of the observed gravity (Glm). We carry out this
calculation for various mantle thicknesses ranging from 5 km (rep-
resenting the maximum likely moment of inertia) to 300 km (cor-
responding to significant differentiation, with a normalized
moment of inertia of �0.335). The resulting surface topographies
(Fig. 6) are consistent with the observed topography at the one-
sigma level, provided the mantle thickness is less than about
200 km.

The presence of deep impact basins such as Tirawa (�5 km in
depth) suggests that the present day icy surface is rigid enough
to support considerable topography on spatial scales of up to a
few hundred km. Support for degree-2 topography, however,
may be more limited, especially if the degree-2 shape and gravity
field were established early, when Rhea’s heat flux was still high
(White et al., 2013). In that case, it may be more appropriate to
assume that the J2 (=�C20) and C22 surface topography is relaxed
and therefore conforms closely to the geoid (equipotential surface
at reference radius R), given by

Hgeoid
20 ¼ R G20 � 5

6
q

� �

Hgeoid
22 ¼ R G22 þ 1

4
q

� � ð12Þ

where q ¼ ðR3x2Þ=ðGMÞ is the ratio of centrifugal to gravitational
acceleration, with x being Rhea’s rate of rotation (currently once
every �4.5 days).

In this scenario of the surface conforming to the geoid, an irreg-
ular (non-hydrostatic) core shape is required to account for the
observed gravity. We can use Eq. (11) to compute the required core
shape (Hc

lm), setting the degree-2 surface topography (Hs
lm) to

match the present day geoid obtained from Eq. (12). For degree 2,
the efficacy of adding core topography in balancing Eq. (11)
depends linearly on core radius (because Dq is proportional to
R�3
c ). That is, the gravity observations can be most efficiently

accommodated by core topography when the H2O mantle is thin.
With larger mantle thicknesses, the core–mantle-boundary is dee-
per and so larger amplitudes of core topography are required to
give rise to the same gravity signal at the surface. Fig. 7 shows,
for various mean mantle thicknesses, the core topography required
to accommodate the observed gravity, assuming the surface topog-
raphy conforms to the geoid. The magnitude of the required core
topography is not much greater than what is expected for a hydro-
static core. Even in the case of a thick (300 km) mantle, the
required excess core topography (i.e., beyond the hydrostatic
expectation) is less than 2 km (on a core of �460 km radius). For
comparison, Vesta’s longest and shortest dimensions are roughly
573 km and 446 km, suggesting that much larger core topography
is likely to be easily supportable. Thomas et al. (2007) and
McKinnon (2013) have likewise argued that a rigid, distorted core
is plausible for Enceladus and Tajeddine et al. (2014) have dis-
cussed a similar scenario regarding Mimas.
4. Conclusions

The main message of this paper is that the addition of a second
gravity flyby has allowed independent estimates of Rhea’s J2 and
C22 without having to make a priori assumptions. The ratio of the
degree-2 gravity coefficients (J2/C22 = 3.91 ± 0.10) indicates a sta-
tistically significant departure from the expected hydrostatic ratio
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of 10/3. As a consequence, the moment of inertia cannot be
inferred directly using the Radau–Darwin relation.

As a point of comparison, the J2/C22 ratio for Enceladus was
recently determined by Iess et al. (2014a) to be 3.51 ± 0.02, also
significantly in excess of the hydrostatic ratio (note that whereas
10/3 is a good approximation for Rhea, the appropriate hydrostatic
ratio to assume for Enceladus is closer to 3.24, due to its rapid rate
of rotation (McKinnon, 2015; Tricarico, 2014)). The presence of sig-
nificant non-hydrostatic topography at Enceladus suggested a dif-
ferentiated interior with an isostatically compensated ice shell
(Iess et al., 2014a). In contrast, Rhea’s large non-hydrostatic gravity
and small topography are more suggestive of internal mass anoma-
lies that have little or no surface expression, as might be expected
for a body with an irregular core surrounded by a weak, relaxed
mantle (e.g., McKinnon, 2013).

We investigated a number of internal structure models, none of
which can be strictly excluded due to the large uncertainties in the
observed shape and the inherent non-uniqueness of the problem.
The observed gravity and topography are consistent with Rhea
being of uniform density (undifferentiated). However, spectro-
scopic observations suggest that the surface is more likely to be
uncontaminated water ice down to at least a few kilometers, lead-
ing us to prefer a two-layer model. Two-layer models, with water
ice mantles overlying denser cores, can accommodate the gravity
observations with modest amounts of topography at the surface
and/or at the core mantle boundary. However, if the current
degree-2 shape was established early, during an epoch of high heat
flux, then the degree-2 water ice surface topography may conform
closely with the geoid, in which case the majority of the excess J2
gravity must be accommodated by an irregular core (McKinnon,
2013). Low moment of inertia models (corresponding to highly dif-
ferentiated interiors) are permitted and require only a modestly
oblate core (less than 2 km of excess core topography) and/or hun-
dreds of meters of excess surface topography.

It is evident that the absence of hydrostatic equilibrium renders
any conclusions non-unique, and this problem is compounded by
the relatively poor shape determination. How might this situation
be improved? Theoretical arguments of whether Rhea should be
differentiated are not useful; even much larger bodies like Titan
could theoretically remain undifferentiated if they accreted suffi-
ciently gently (Barr et al., 2010). Potentially more promising are
observational ways of determining the normalized moment of
inertia (C=MR2) of Rhea.

One possibility is to measure Rhea’s obliquity. As argued by Bills
and Nimmo (2008), given J2 and C22, a measurement of the obliq-
uity is then sufficient to determine the normalized moment of
inertia of a satellite, assuming that it is in a Cassini state. Chen
et al. (2014) calculated a predicted obliquity for Rhea of 0.03�
(assuming hydrostatic equilibrium). This translates into a surface
distance of 0.4 km, which would be hard to detect with optical
images, but perhaps not entirely out of the question.

Since C22 is known, one could also measure the longitudinal
libration amplitude to determine the moment of inertia, as was
done at Mimas by Tajeddine et al. (2014). Unfortunately, Rhea’s
comparative lack of tidal distortion and its extremely low eccen-
tricity (e = 0.001) conspire to produce a very small libration ampli-
tude. For a normalized moment of inertia of 0.35, the amplitude is
12.6 m (cf. Comstock and Bills, 2003). Optical images would not be
sufficient to resolve such a small displacement, although radar
measurements might.

In spite of the improved determination of Rhea’s gravity field,
the significant uncertainties in shape prevent us from drawing
strong conclusions about the interior structure. In particular, nei-
ther undifferentiated nor fully-differentiated structures can be
excluded. Without additional observational constraints, which
may be difficult to obtain, further insights into Rhea’s internal
structure may remain elusive.
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