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Active eruptions from the south polar region of Saturn’s 
~500-km-diameter moon Enceladus are concentrated along 
a series of lineaments known as the ‘tiger stripes’1,2, thought 
to be partially open fissures that connect to the liquid water 
ocean beneath the ice shell3,4. To date, no study simultane-
ously explains why the tiger stripes should be located only 
at the south pole, why there are multiple approximately par-
allel and regularly spaced fractures, what accounts for their 
spacing of about 35!km, and why similarly active fissures have 
not been observed on other icy bodies. Here we propose that 
secular cooling, which leads to a thickening of the ice shell 
and building of global tensile stresses5,6, causes the first frac-
ture to form at one of the poles, where the ice shell is thin-
nest owing to tidal heating7. The tensile stresses are thereby 
relieved, preventing a similar failure at the opposite pole. 
The steadily erupting water ice loads the flanks of the open 
fissure, causing bending in the surrounding elastic plate and 
further tensile failure in bands parallel to the first fracture—a 
process that may be unique to Enceladus, where the gravity is 
too weak for compressive stresses to prevent fracture propa-
gation through the thin ice shell. The sequence of fissures 
then cascades outwards until the loading becomes too weak 
or the background shell thickness becomes too great to permit 
through-going fractures.

To explain the polar location of the tiger stripes, we connected 
the shell structure predictions from a tidal heating model7 with a 
thermal evolution scenario and associated tensile-failure model5,6. 
To explain the regular spacing of the tiger stripes, we then modelled 
the elastic bending stresses resulting from loading at the edge of the 
first fracture and the consequent initiation of parallel fractures.

Given that the erupted ice grains appear to be sampling the inter-
nal liquid-water ocean8–10, the tiger stripes may be taken as open 
fissures that fully penetrate the ice shell11. Accordingly, although 
the south polar region bears evidence of a complex geologic his-
tory12–15, most studies presume an extensional origin for the tiger 
stripes. Whereas Yin et al.14,15 suggest a strike-slip origin for the tiger 
stripes, attributing their regular spacing to a stress shadowing effect, 
we regard an extensional origin as more likely because it can create 
open conduits directly to the underlying liquid ocean, allowing the 
eruptions to be initiated and sustained by controlled boiling11,16.

Over time, changes in the semi-major axis and eccentricity of 
the orbit of Enceladus will alter the efficacy of tidal heating—the 
primary source of internal heat production for Enceladus17. Even if 
Enceladus is close to a steady-state configuration, in which viscous 
relaxation at the base of the ice shell is counterbalanced by ongoing 
freezing and melting18,19, any period of gradual secular cooling will 
result in some net freezing of the ocean. As long as there exists a 
layer within the ice shell that is free of active faults and capable of 
accumulating tensile stresses, the volume increase associated with 

the phase change from water to ice will result in ocean pressuriza-
tion5 (Methods). As freezing progresses, tangential stresses build 
until the tensile failure limit is exceeded somewhere in the ice shell 
(Fig. 1 and Supplementary Fig. 1). Since tidal heating should cause 
the shell to be thinnest at the poles7,20, tangential stresses are maxi-
mized at the poles such that the initial failure should occur at one 
of the poles, with either being equally likely. In contrast to previous 
work21–23, this mechanism thus accounts for the polar concentra-
tion of the eruptive activity without requiring true polar wander. 
Although periods of secular heating and net melting of the ice shell 
have also probably occurred, especially if Enceladus began cold, 
this would have generated compressive stresses and thrust faulting. 
Because such faults do not readily produce open fissures, however, 
we do not favour compressive failure as the mechanism primarily 
responsible for the formation of the tiger stripes.

Whereas the cold upper part of the ice shell behaves elastically, 
the warmer ice toward the base of the shell behaves viscously on 
long timescales (Methods). Provided that the ductile portion of the 
ice shell is not too thick, however, the fracture can penetrate the 
entire ice shell, establishing an open pathway directly to the under-
lying ocean6 (Supplementary Fig. 2). Crucially, once the first fissure 
forms, the ocean overpressure is relieved, removing the mechanism 
for generating large, global tangential stresses. That is, it is no longer 
possible for a similar fracture to develop at the opposite pole, or 
anywhere else. In contrast with previous models involving diapirs 
or impact events21–23, our model thus accounts for the concentration 
of activity at a single pole by virtue of the fact that the critical pres-
sure- and stress-relieving failure can occur only once.

We therefore suggest that Baghdad Sulcus, which cuts directly 
through the geographic south pole, was the first fracture to form 
and that the remaining fractures formed through a distinct, though 
related, process (see below). Baghdad’s orientation of ~30° from the 
tidal axis approximately maximizes normal tensile stresses arising 
due to diurnal tidal deformation24. Although these tidal stresses 
are weaker (~14–85 kPa), when combined with the isotropic back-
ground tensile stress field resulting from ocean pressurization, the 
total could be sufficient to cause failure. This may explain the orien-
tation of the tiger stripes, provided that the ice shell has not experi-
enced non-synchronous rotation since their formation.

Once the first open fissure has formed, liquid water rises to the 
level of neutral buoyancy (the lower 90% becomes filled with water) 
and begins to boil off at the top, where it is exposed to the vac-
uum. Whereas ocean overpressure was important for forming the 
first fracture, it is relieved once that fissure is open, and does not 
therefore contribute to driving the eruptions themselves (Methods), 
which are instead driven by controlled boiling16. Turbulent dissipa-
tion associated with tidally driven cyclic flushing and refilling of 
the liquid-filled fissure can prevent it from freezing shut4. Provided 
these (or similar) mechanisms can maintain the stability of such 
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ocean-to-surface pathways, the eruptions may persist for extended 
periods. Some 91% of the erupted solids fall ballistically back to the 
surface of Enceladus25, accumulating preferentially on the flanks 
of the open fissures26, possibly explaining the origin of the ridges 
observed along the tiger stripes27.

If the cold upper part of the ice shell behaves elastically, both the 
material accumulated on the flanks of the open fissure and the loss 
of buoyancy associated with any localized ice-shell thinning act like 
downward forces applied near the edge of the broken elastic plate, 
causing bending stresses to develop in the surrounding ice shell28,29 
(Supplementary Fig. 3). Given a load acting at the edge of the bro-
ken plate, it can be shown that the maximum bending stresses occur 
at a distance from the first fracture

α= πx
4 (1)m

where α is the characteristic length scale for elastic flexure, given by
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where E and ν are the Young’s modulus and Poisson’s ratio for the 
icy shell, g is the acceleration due to gravity, ρw is the density of the 
ocean, and Te is the effective elastic-layer thickness. If the typical 
tiger-stripe spacing of ~35 km is governed by the position where 
maximum bending stresses occur, then, assuming E = 9 GPa, 
ν = .0 25 and ρw = 1,020 kg m− 3, and with g = 0.113 m s− 2, we obtain 

≈Te  5.2 km (Supplementary Fig. 4). Given the expected temperature 
structure of the ice shell, this corresponds to a total local shell thick-
ness of roughly 8–9 km (Methods), consistent with the south-polar 
shell thickness inferred from gravity, topography and librations7. 
Approximating the load as a line load, V0, acting at the edge of the 
broken plate, it can be shown (Methods) that the resulting bending 
causes maximum tensile stresses at xm to reach

σ α= π−π∕V
T
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Bending stresses can thus initiate secondary fractures in bands 
parallel to the first fracture once the load acting at the edge of the 
plate is sufficient to cause σmax to exceed the tensile failure limit 
for ice, σcrit. Although localized ice-shell thinning could, in prin-
ciple, contribute to the bending of the plate, the process may be 
self-limiting because the melting ice is opposed by viscous closure 
and the freezing that results from reduced local turbulent dissipa-
tion, making this effect too small to produce the necessary loading4 
(Methods and Supplementary Fig. 5). A more effective source of 
edge loading may be the accumulation of erupted material onto 
the ridges flanking the open fissure. The eruption rate and the frac-
tion of erupted material falling back onto the ridges determines 
the time required before the bending stresses cause tensile failure 
and the initiation of a secondary fracture (Supplementary Fig. 6). 
If, for example, the eruption rate of the solids from a single fissure 
is 20 kg s−1 and if 91% of this material goes into the formation of 
the flanking ridges, then, taking the fissure length to be 100 km, 
the loading on each ridge reaches the critical value after ~1 Myr 
assuming σcrit = 1 MPa (Methods).

As the secondary fracture begins to propagate, the broken portion 
of the elastic plate can no longer contribute to supporting the bend-
ing moment and the effective elastic thickness is reduced. Assuming 
that the load is not changing on the timescale of fracture propaga-
tion, the stress profile in the elastic plate becomes increasingly steep, 

with the crack-tip stress being always tensile and increasing steadily 
as the fracture propagates. This effect is countered by the compres-
sive stresses from overburden pressure, which increase with depth 
(Supplementary Fig. 7). For Enceladus, however, gravity is so weak 
that such compressive stresses are not important and the crack-tip 
stresses are always increasing as the crack propagates, meaning that 
the crack should penetrate rapidly through the entire elastic layer. 
For larger icy-ocean worlds, the gravity is generally too strong to 
allow the crack-tip stress to build in this way, potentially explain-
ing why similarly active fissures are not observed on other bodies  
(Fig. 2 and Methods).

Although roughly the lower 40% of the ice shell is ductile on 
long timescales (Methods), it may behave elastically on the times-
cale of fracture propagation, such that the secondary fracture can 
penetrate all the way through to the ocean—though future work is 
required to model the full viscoelastic nature of this problem. Once 
a through-going fracture is established in this way, it evolves in a 
fashion similar to the first fracture, allowing the sequence to cas-
cade outward from the original fracture in symmetric pairs (Fig. 1):  
after Baghdad, Cairo and Damascus, then Alexandria and the fea-
ture informally named ‘E’ by Yin and Pappalardo14. Although the 
driving processes and geometries differ, loading-induced stresses 
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Fig. 1 | Proposed sequence for tiger-stripe formation. a, The global 
tensile stress field (orange shading) arising from secular cooling and the 
consequent ocean pressurization leads to tensile failure at one of the poles, 
where the ice shell is thinnest. b, Following the first fracture’s formation, 
the erupting solids then accumulate preferentially in ridges flanking the 
open fissure, loading the edge of the broken ice shell and producing bending 
stresses in the surrounding elastic plate (orange and blue shades indicate 
tensile and compressive stresses, respectively, in the elastic layer; the 
ductile layer is not shown). The bending stresses eventually become large 
enough to initiate a set of secondary fractures parallel to the first and at a 
distance, xm, determined by the ice shell’s elastic properties, according to 
equation (1). c, Once open, the secondary fractures then develop in a fashion 
similar to the first, resulting in a cascading sequence of parallel fissures.
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have similarly been invoked to explain the spacing of hotspot vol-
canoes on Earth30,31.

There are several ways in which the cascade may be arrested. If 
the eruption rate becomes too slow, bending stresses may not reach 
the critical value on a timescale for which the ice behaves elastically. 
If the eruption rate through each fissure decreases as new fissures 
are formed, those forming later may not be loaded quickly enough 
for the resulting bending stresses to generate additional fractures. 
Fractures forming farther from the pole, where the background ice-
shell thickness is greater, may also have a more difficult time propa-
gating through the thicker ductile part of the ice shell.

Finally, although our model may be able to account for the 
initial formation of the tiger stripes, other processes, such as 
tidal and gravitational stresses, may continue to rework the  
fissures, forming strike-slip features14,15 or the funiscular plains13, 
for example. We emphasize that, in spite of the youthful appear-
ance of the south-polar terrain, and our conclusion that the total 
south-polar shell thickness at the time of tiger-stripe formation is 
close to the present-day value of ~9 km, the continuing eruptive 
activity, along with ongoing tidal reworking, could keep the sur-
face young even if the tiger-stripe fractures did not form recently. 
Likewise, our results are not incompatible with stratigraphically 
older features having formed through similar or distinct processes 
that may have operated prior to the formation of the currently 
active fissures as part of the south polar region’s evidently complex 
geologic history12–15.

Methods
Temperature structure. The total ice-shell thickness (d) and the effective 
elastic thickness (Te) are related by the temperature structure of the ice shell. 
For a conductive ice shell, accounting for the temperature-dependent thermal 
conductivity, which goes as −T 1, the temperature structure is given by32
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where z is the depth below the surface and where Ts and Tb are the surface and basal 
temperatures, respectively. On long timescales, the warmer parts of the ice shell 
behave viscously while the coldest parts of the ice remain elastic33. If we assume that 
the ductile layer corresponds to the ice that is warmer than 160–180 K, then from (4),  
and assuming Ts = 75 K and Tb = 273 K, we obtain ∕ ≈T de  0.59–0.68.

Tensile-stress accumulation due to secular cooling. Beginning with equations 
(2)–(5) by Manga and Wang5, we obtain a set of analytical expressions that capture 
the effects of ocean overpressure and ice-shell tensile-stress accumulation resulting 
from secular cooling and the corresponding ice-shell thickening. Following their5 
notation, we assume an ice shell of outer radius R and inner radius ri above a global 
liquid-water ocean over a rocky core of radius rc. Taking the ice and water densities 
to be ρi and ρw, respectively, it can be shown that the excess pressure in the ocean 
resulting from freezing a thickness of water h is given by
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where ξ is the radius corresponding to the base of the elastic layer (ξ = −R Te) and 
β = 4 × 10−10 Pa−1 is the compressibility of water. This excess ocean pressure drives 
tangential stresses in the ice shell that, when evaluated at =r R, are given by
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−ξ( )
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Supplementary Fig. 1 shows that, starting with an unbroken ice shell that is capable 
of supporting global-scale tangential stresses, a few hundred metres of ocean 
freezing is sufficient to cause tensile failure in the ice shell.

Manga and Wang5 assumed a uniform ice shell such that there was no preferred 
location for the tensile failure. For the purposes of the above calculation, we have 
made the same assumption. However, whereas a non-uniform ice-shell thickness 
should not meaningfully affect the above result34, it does affect the preferred 
location for the tensile failure, as stresses will concentrate in the thinnest parts of 
the shell. Even before the initiation of eruptive activity, the ice shell is expected 
to have been thinnest at the poles due to the non-uniform distribution of tidal 
heating7. Hence, tangential stresses resulting from secular cooling should have been 
concentrated at both poles, with tensile failure being equally likely to occur at either 
pole. Although they are an order of magnitude smaller, tidal stresses and stresses 
associated with topographic anomalies will also affect the stress field and may 
contribute to determining the precise location and orientation of the first failure.

Propagation of initial fracture. Once initiated at the surface (Fig. 1a), tensile 
cracks will propagate downward on a timescale that is rapid compared with the 
Maxwell time. We develop a model based on linear elastic fracture mechanics to 
calculate the maximum depth of penetration of fractures. As the subsurface ocean 
is pressurized, tensile stresses are generated globally in the elastic layer (we assume 
that stresses do not accumulate in the lower, warmer part of the ice), and if these 
stresses exceed the tensile strength of ice, a fracture will initiate at the surface 
and propagate downward. The model from the previous section always predicts 
maximum tensile stresses at the surface, rather than at intermediate depths within 
the ice shell. If the tip of the fracture extends below the stressed elastic layer, 
the upper region of the crack is under tension but the tip of the crack is under 
compression due to overburden pressure. We model the downward propagation of 
the fracture under the assumption that the entire ice shell behaves as a linear elastic 
solid on the timescale of crack propagation but that only the elastic layer supports 
tensile stresses that encourage fracture penetration. We use a boundary-element 
code based on the displacement discontinuity method35, extended to include a 
crack-tip element6 to more accurately resolve the stress field near the crack tip. In 
each calculation, we initiate a short crack near the surface, extending to one-half 
the depth (dc) where lithostatic compression balances the applied tensile stress (σt)

∫ ∫σ ρ=z gz zd d (7)
T d

0
t

0 i
e c

where z is depth from the surface. We note that this formula is similar to the 
maximum depth of fracture penetration from Qin et al.36, except that we account 
for the presence of a viscous ice layer. We solve for dc, obtaining

σ
ρ=d T

g
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i

We calculate the mode-I stress intensity factor KI , describing the magnitude 
of stresses near the crack tip. Next, we incrementally extend the crack length, 
computing a new solution for displacements and KI  for each successive crack 
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Fig. 2 | Crack-tip stress gradient. Change in tip stress as the crack 
propagates, as a function of surface gravity and effective elastic-layer 
thickness, given by equation (31). Positive values (green) correspond  
to conditions that permit the crack-tip stress to become increasingly  
tensile as the crack propagates. Negative values (magenta) correspond  
to conditions in which the compressive stresses due to overburden 
pressure build too rapidly to permit crack propagation immediately 
following the initial bending-stress-induced failure (Supplementary Fig. 7).  
The dashed black contour represents the transition between the two 
regimes. The vertical black lines represent the estimated ranges of  
elastic-layer thicknesses for icy-ocean worlds.
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length. The crack is arrested if <K 0I , which is equivalent to assuming zero fracture 
toughness. Our numerical and analytical results are in good agreement with one 
another (Supplementary Fig. 2) and are consistent with earlier work6.

Bending stresses. The load acting at the edge of the broken plate causes bending 
stresses to develop in the elastic part of the ice shell28,29,37. We assume that the ice 
shell is completely broken and that there are no remaining horizontal loads—we 
neglect membrane stresses since they cannot be transmitted across the open 
fissure. Approximating the problem in a Cartesian geometry, and assuming 
cylindrical bending, the bending moment at any given point is given by

=M x D w
x

( ) d
d

(9)
2

2

where w is the deflection, x is the horizontal distance increasing away from the 
fracture and D is the flexural rigidity, given by

ν
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−
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We assume that the flexural rigidity does not vary with x. The load is related to the 
deflection by

ρ+ =D w
x
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(we assume only vacuum exists above the ice shell).
For a line load acting at the edge of the broken plate, it can be shown28 that the 

deflection is given by
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where V0 has units of N m−1 and where α is given by
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It can be shown that the bending moment per unit length along the fracture (units 
of N) is then given by

α α= α− ∕M x V x( ) e sin (14)x
0

The maximum bending moment occurs where ∕ =M xd d 0, at

α= πx
4 (15)m

The fibre stresses within the plate can be written
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where z is the vertical position measured downward from the top of the plate 
(Supplementary Fig. 3). The maximum fibre stresses occur at =x xm, where the 
stresses are tensile in the upper half ( < ∕z T 2e ) and compressive in the lower half 
( > ∕z T 2e ) of the deflected elastic plate.

This distance, xm, varies as a function of the elastic properties of the shell 
and is a 3/4-power function of Te and a 1/4-power function of E (Supplementary 
Fig. 4). Assuming uniform properties across the ice shell, tensile failure will 
occur at this distance and parallel to the first fracture. Given E = 9 GPa, we find 
that the maximum stresses occur at a distance of 35 km from the fracture when 

≈Te  5.2 km (Supplementary Figs. 3 and 4). Assuming a predominantly conductive 
ice shell, and taking the elastic layer to correspond to the uppermost part of the ice 
shell where the temperature is <160 K, this elastic thickness implies a total shell 
thickness (elastic plus ductile layers) of ~8.9 km, consistent with the polar ice-
shell thickness inferred from shape, gravity and libration observations7. Whereas 
~5.2 km may have been the relevant effective elastic thickness at the time of tiger-
stripe formation, subsequent heating or reworking and faulting of the ice shell 
may have reduced the modern effective elastic thickness to perhaps <2 km, in 
line with the low end of estimates based on studies of local flexural and tectonic 
features38,39—though we emphasize that these studies provide only a lower bound 
over the history of Enceladus.

The elastic properties similarly determine how the magnitude of the fibre 
stresses is related to the magnitude of the load. Given that the maximum tensile 
stress occurs at =x xm and =z 0, from equation (16), its magnitude is

σ = M x
T
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which can also be written in terms of V0 as
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Tensile failure occurs when the load is sufficient to make the bending moment at 
=x xm equal to the critical value of

σ=M T
6

(19)crit
crit e

2

where σcrit is the tensile failure limit for cold ice, which we take to be 1 MPa for 
intact ice40 or 100 kPa for previously weakened ice.

Ice-shell thinning. Here, we assess the possible effect of loss of buoyancy due 
to thinning ice in the vicinity of an open fissure. We calculate the steady-state 
temperature distribution around a fissure using a radial-basis-function finite-
difference approach. We use an isothermal surface boundary condition of Ts = 75 K, 
and an isothermal boundary condition of Tm = 273 K on the crack wall and along 
the ice–ocean interface (Supplementary Fig. 5a). For the portion of the crack 
that extends above the level of neutral buoyancy, the temperature varies linearly 
between the surface temperature and Tm at the upper surface of the water. We 
applied a far-field insulating boundary condition at a distance of 30 km from 
the crack. We determine the temperature-dependent thermal conductivity using 

= ∕k c T , where c = 651 W m−1 is an experimentally derived constant41. For a vertical 
crack in an ice shell with thickness 12 km, the steady-state conductive heat flow is 
~750 W m−1 per side.

Once open, the tendency for the fissure to narrow due to freezing is opposed 
by dissipation as water is cyclically flushed in and out of the fissure4. Since the 
temperature gradient, and therefore the rate of conductive heat loss away from the 
fissure, is greatest near the surface and decreases towards the base of the fissure, the 
freezing will be most rapid at the top of the fissure and slower toward its base. We 
idealize the crack as a wedge shape and estimate the dissipation within the crack as 
well as the heat conducted away from the crack.

We estimate the steady-state opening angle, θ, for the melt-back wedge 
illustrated in Supplementary Fig. 5a. Assuming that the crack opens and closes 
periodically42, we can write the width of the crack, b, as a function of depth, z, and 
time, t, as

θ ω= + +b z t b z A t( , ) 2 tan sin( ) (20)0

where b0 is the mean width of the crack at the surface, A is the amplitude of the 
oscillations and ω is the angular frequency. Conservation of mass requires that the 
velocity of the liquid in the crack, u, be related to the variations in crack width

∂
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∂
ub
z

b
t

( ) (21)

The energy dissipated by oscillatory flow in a fracture is found by relating the 
resolved shear stress on the wall, τ, to the mean flow velocity, u , calculated from 
equation (21), using the Darcy–Weisbach equation

τ ρ= f u1
2

(22)2

where f  is a friction factor and ρ is the fluid density. Because the eruption-
driven net outward flow of water is many orders of magnitude slower than the 
peak velocities in the oscillatory flow, it does not contribute meaningfully to the 
dissipation and is therefore neglected here. While highly turbulent, the average 
properties of the flow are in quasi-steady state, and the net acceleration of the water 
is negligible. The wall shear stress is thus balanced by a dynamic pressure loss per 
unit depth as

τ = b P
z

2 d
d

(23)

In turn, the rate of energy dissipation per unit volume (Qv) is related to the rate of 
decrease in dynamic pressure

=Q u P
z

d
d

(24)v

We multiply Qv by the crack width to obtain the energy dissipated per unit area of 
crack wall

ρ=q f u (25)d
3

Dissipation decreases very rapidly with increasing crack width (increasing opening 
angle). In Supplementary Fig. 5b, we show predicted values of the dissipation 
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integrated along the wall of the crack for a crack with a surface width of 1 m and an 
oscillation amplitude of 0.9 m, assuming a friction factor = .f 0 01 (representative 
of fully developed turbulent flow in a smooth channel). Owing to the large 
uncertainties in the crack width, amplitude of oscillation, and friction factor, the 
dissipation is also very uncertain, but our result nevertheless demonstrates that, 
if the crack begins to freeze shut, dissipation in the crack becomes much larger 
than the conducted heat flow, causing melting. On the other hand, dissipation 
alone cannot produce enough melt-back to achieve opening angles larger than a 
few hundredths of a degree. Thus, the dissipation mechanism, while capable of 
preventing the fissure from freezing out4, does not produce a melt-back wedge wide 
enough to contribute significantly to the bending stresses discussed above.

Ridge accumulation. Erupted material can accumulate in ridges at the surface, 
loading the edge of the broken elastic plate from the top. Such a load, per unit 
length along the fracture, is

=V mg
L (26)0

where m is the mass of accumulated material and L is the total length of the ridges. 
Given an accumulation rate of ṁ, the load as a function of time is given by

= ̇V t mg
L

t( ) (27)0

The accumulated load gives rise to tensile stresses which are maximum at =x xm 
and given by equation (18). Supplementary Fig. 6 shows this maximum tensile 
stress as a function of time and accumulation rate, with contours indicating two 
examples of tensile-failure limits. Assuming a tensile-failure limit of 1 MPa and 
the same elastic properties used in Supplementary Fig. 3, failure occurs when 

= ~ . ×V 3 1 100
8 N m−1. Assuming an accumulation rate of 10 kg s−1 per 100 km 

length of ridge, the accumulated load would be sufficient to initiate tensile 
failure after ~875 kyr. As a point of reference, the current total rate of erupted 
solids has been estimated at ±[51 18] kg s−1, of which 9% is estimated to escape 
from Enceladus while the remaining 91% falls ballistically back to the surface25. 
The rate of material accumulation per ridge is of course somewhat smaller and 
depends on how the erupted material is distributed among the tiger stripes, 
whose rates of activity vary. The eruption rates also vary with time over  
various timescales43,44.

The accumulated load may be related to the cross-sectional area, A, of the  
ridge by

ρ=V A g (28)0 r

where ρr is the assumed density of the ridge. Assuming ρr = 900 kg m−3, for example, 
we obtain a load sufficient to generate tensile stresses of 1 MPa when the cross-
sectional area of the ridge is ~3 km2. If the effective tensile failure limit at the  
time of the tiger stripes’ formation is only 100 kPa, then the required ridge cross 
section is just ~0.3 km2. Estimating the height (≲150 m) and width (≲2 km per 
side) of the present-day ridges from Cassini imagery12,27 and accounting for 
the deflection (~120 m) discussed above, the ridge cross-sections may only be 
0.2–0.3 km2 at present. This suggests that our proposed mechanism requires either 
that the bending-induced failures occurred only after the effective tensile failure 
limit was reduced to ~100 kPa (perhaps due to pervasive weakening following 
the formation of the first fissure), or that the ridges were initially larger and have 
experienced some erosion or relaxation (perhaps due to localized heating) since 
their formation.

Subsequent fractures. Once the bending stresses are great enough to cause  
tensile failure at the surface, a new fracture is initiated (Fig. 1b). Whether or  
not the new fracture can penetrate the ice shell depends on how the stress  
field evolves during crack propagation. Although this is a dynamic process, we 
can gain some insight by considering the hypothetical static scenario in which 
the crack is arrested after propagating a distance y from the surface. At this point, 
the load, which has not changed on the timescale of crack propagation, would 
now have to be supported by the partially fractured plate. That is, focusing on the 
location of the fracture, where =x xm, the bending moment that must be supported 
remains fixed at Mcrit, given by equation (19). The fibre stresses in the remaining 
unbroken part of the lithosphere would have to support the same bending moment 
but with a reduced effective elastic-layer thickness. The bending stress at the  
crack tip is thus

σ σ=
−

=
−

y M
T y

T
T y

( ) 6
( ) ( )

(29)tip,bending
crit

e
2

crit e
2

e
2

where Te is the initial elastic-layer thickness such that the effective remaining elastic 
thickness is always −T ye . The bending stresses at the crack tip are therefore always 
tensile and increasing in magnitude as the crack tip propagates downward through 
the ice shell (dashed red lines in Supplementary Fig. 7).

This effect is opposed by the background compressive stresses that exist due 
to overburden pressure, which increases linearly with depth (dotted blue lines in 
Supplementary Fig. 7), such that the net stress at the crack tip is

σ σ ρ=
−

−y T
T y

gy( )
( )

(30)tip
crit e

2

e
2 ice

The gradient as a function of depth is then given by

σ σ ρ=
−

−
y

y T
T y

gd
d

( ) 2
( )

(31)e

e
tip

crit
2

3 ice

such that σ y( )tip  increases monotonically with y as long as

σ
ρ<T g 2

(32)e
crit

ice

Provided that equation (32) is satisfied, the tensile stresses due to bending 
always exceed the compressive stresses due to overburden pressure, such that the 
net stresses at the crack tip are always tensile, and increasingly so as the crack 
penetrates deeper through the lithosphere (Supplementary Fig. 7). Hence, once 
initiated in this way, crack propagation cannot be arrested at any point within the 
lithosphere. Whereas the condition described by equation (32) is readily satisfied 
for Enceladus due to its thin ice shell and small gravity, it may not be satisfied for 
larger bodies or when a thicker elastic layer is present. For example, this condition 
is not satisfied for Europa unless the elastic-layer thickness is at the low end of the 
estimated range29—less than about 1.5 km (Fig. 2). For Ganymede, Callisto and 
Titan, the gravity is so strong that the compressive stresses overwhelm the bending 
stresses for plausible shell thicknesses29,45–48, precluding rapid crack propagation. 
Hence, because this situation is permitted only for bodies with low surface gravity, 
or when the ice shell is extremely thin, Enceladus may be unique among ocean 
worlds for its ability to develop through-going fractures due to bending stresses 
(positive or green region of Fig. 2).

What happens when the crack tip reaches the ductile part of the ice? The 
lower part of the ice shell is ductile on long timescales, and therefore does not 
participate in the gradually accumulated bending stresses that support the edge 
loading. If the new fracture is propagating sufficiently rapidly, however, the entire 
ice shell behaves elastically (the Maxwell time is at least a few hours, even for the 
low-viscosity ice near the base of the ice shell). That is, as the fracture propagates 
downward, stresses may build within the otherwise ductile regions of the ice shell, 
helping to support the load, at least transiently. Determining how this changes  
the evolution of the stress profile during crack propagation will be the subject of 
future work.
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Supplementary Figure 1: Tensile stress accumulation due to ocean freezing — Accumulation of excess ocean
pressure (dotted blue line) and the resulting tangential stresses in the ice shell (solid blue line) as a function
of the thickness of water that has frozen in the presence of an ice shell that is capable of supporting global
tensile stresses. Also shown is a nominal tensile failure limit for cold ice (dashed red line).

2 4 6 8 10 12 14 16 18 20

Ice shell thickness (km)

0

2

4

6

8

10

12

14

E
la

st
ic

 la
ye

r 
th

ic
kn

e
ss

 (
km

)

Crack Reaches Ocean
(1 MPa)

Crack Reaches Ocean
(3 MPa)

Crack Arrested

Supplementary Figure 2: Initial fracture penetration — Conditions determining whether or not a fracture
initiated at the surface can penetrate entirely through the ice shell, with the dark and light grey regions
corresponding to applied stresses of 1MPa or 3MPa, respectively, and delineated with the solid black lines
given by equation (8), assuming g = 0.113m/s2 and ⇢i = 930 kg/m3. The symbols represent the results
of the numerical analysis, with blue symbols indicating that the crack reaches the ocean and grey symbols
indicating that the crack is arrested; circles and triangles correspond to applied stresses of 1MPa or 3MPa,
respectively.
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Supplementary Figure 3: Elastic plate deflection and internal stresses — Assumed parameters for this exam-
ple are E = 9GPa, ⌫ = 0.25, ⇢w = 1020 kg/m3, and g = 0.113m/s2, for which the elastic thickness required
to deliver xm = 35 km, given by equations (1) and (2), is Te ⇡ 5.22 km. Deflection is computed according
to equation (12) and is shown without any vertical exaggeration (though note that the illustration’s aspect
ratio is approximately 30:1). Fibre stresses are computed with equation (16) and are illustrated with shad-
ing, where warm colours correspond to tensile (positive) stresses and cool colours to compressive (negative)
stresses. Compressive stresses due to overburden pressure are not shown. In the example illustrated, the
deflection at the edge of the plate reaches a maximum value of ⇡ 120m when the maximum fibre stress
reaches 1MPa.
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Supplementary Figure 4: Position of maximum tensile stress — Distance from the fracture to the position
of maximum tensile stress, computed via equation (15), as a function of the ice shell’s elastic properties:
namely the Young’s modulus (E, shown on a logarithmic scale) and the e↵ective elastic layer thickness (Te).
A fixed Poisson’s ratio of ⌫ = 0.25 is assumed. As a point of reference, a nominal Young’s modulus of
E = 9GPa is indicated with a vertical dashed white line, illustrating that the spacing of 35 km corresponds
to an elastic thickness of Te ⇡ 5.2 km, indicated by the horizontal dashed white line.
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Supplementary Figure 5: Melt-back wedge development — (a) Development of ice shell temperature structure
in the vicinity of a liquid filled fissure. The red dots represent the evaluation points in the radial basis function
calculation. (b) Turbulent dissipation as a function of the fissure’s opening angle, ✓. The dashed black line
indicates the approximate dissipation required to keep the fissure from freezing shut. For opening angles
larger than ⇠ 10�3 degrees, the dissipation is not su�cient to keep the fissure open.
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Supplementary Figure 6: Stress accumulation due to ridge loading — Accumulated tensile stresses at xm =
35 km as a function of time and the rate of material accumulation in the flanking ridge, whose length is
assumed to be 100 km. The dashed white contours illustrate failure envelopes assuming tensile failure limits
of 100 kPa or 1MPa.
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Supplementary Figure 7: Crack tip stress resulting from bending — Stresses at the crack tip as a function
of crack tip depth for the cases of (a) Enceladus and (b) Ganymede. Positive stresses are tensile, negative
stresses are compressive. The dotted blue line represents the compressive stresses due to lithostatic pressure.
The dashed red line represents the bending stresses given by equation (29). The solid black line represents
the net stress given by equation (30). Whereas for Enceladus, the crack tip stress is always increasing as the
crack propagates downward, the crack tip stress initially decreases for Ganymede, even when we assume an
equally thin ice shell. The surface gravity is g = 0.113m/s2 for Enceladus and g = 1.428m/s2 for Ganymede.
For both examples, we assume Te = 5.2 km, �crit = 1MPa, and ⇢ice = 930 kg/m3.
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