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Text S1: Measurement Precision10

Figure 1 in the main text illustrates how libration amplitude is expected to vary with ice11

shell thickness for each of the bodies we considered. If the ice shells are thin (and therefore12

the oceans are thick), libration amplitudes are relatively large and easily distinguished13

from the ‘no-ocean’ case. But what measurement precision is required to distinguish14

between the different interior models and to confirm or rule out the presence of a subsurface15

ocean? This depends on what part of Figure 1 we consider. Because libration amplitude16
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is an inverse function of shell thickness, the curves in Figure 1 (recognizing that this is17

a log-log plot) are steep when the ice shell thickness is small and flatter when the ice18

shells are thick (i.e., when the oceans are thin). That is, for small ice shell thicknesses,19

small changes in ice shell thickness result in large changes in libration amplitude. By20

comparison, for larger ice shell thicknesses, a much larger change in shell thickness is21

required to yield the same change in libration amplitude. The gradients of the curves22

in Figure 1 ( ∂d
∂γ
) can thus be used to quantify the relationship between the precision of23

libration amplitude measurements and the resulting uncertainty in shell thickness (for24

a given thickness, this is very nearly equivalent to the uncertainty in ocean thickness).25

Considering a range of possible libration amplitude measurement uncertainties (from 1 to26

100m), we obtain the shell/ocean thickness uncertainties shown in Figure S2. Although27

this information is already implicit in Figure 1, Figure S2 reveals greater detail that can28

further clarify the relationships. Notably, if the thickness uncertainty is larger than the29

ocean thickness, the presence of an ocean cannot be confirmed (region above/right of the30

dash-dotted black line). Whereas Figure S2 assumes ρcore = 2400 kgm−3, Figure S3 is31

obtained by instead assuming ρcore = 3000 kgm−3, which may be more applicable to the32

larger moons depending on their thermal evolution (Castillo-Rogez et al., 2023).33

The white contours in Figures S2 and S3 indicate the precision with which the ice shell34

thickness can be estimated under various conditions. Estimating the ice shell thickness35

to within 10%, for example, requires being below the dashed white line; being below the36

dash-dotted white line ensures estimates are within 50% of the true value. Because the37

gradients ( ∂d
∂γ
) vary as a function of shell thickess, no single value of libration measurement38
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precision can guarantee any given desired precision in shell/ocean thickness determination.39

Nevertheless, a few broad conclusions can be drawn from Figures S2 and S3. First, using40

librations to confirm the presence of a subsurface ocean on Titania or Oberon may be41

difficult unless the ice shells are thin or the libration measurements can be very precise42

(lower left corners of those subplots). Second, results are similar across Miranda, Ariel,43

and Umbriel, suggesting that one broad set of planning guidelines may be suitable for all44

three. For example, if libration amplitudes can be estimated to within ∼ 10m, oceans45

can be detected within these bodies even for ice shell thicknesses up to ∼ 100 km. With46

a precision of ∼ 10m, libration measurements would reveal oceans as thin as ∼ 30 km47

at Miranda or ∼ 40 km at Ariel and Umbriel. This again assumes ρcore = 2400 kgm−3
48

but if we assume ρcore = 3000 kgm−3 for Ariel and Umbriel (Castillo-Rogez et al., 2023),49

∼ 10m of libration amplitude precision assures ocean detection only if oceans are at least50

∼ 60 km thick. Detection of thinner oceans would require even greater precision in the51

libration amplitude estimates, which could be achievable given the right instrumentation52

and tour design (Park et al., 2020).53

Text S2: Radiogenic Heating54

Figure S5 illustrates radiogenic heat production for bodies that are a mixture of ice and55

rock. We assume a mixture of water/ice with ρH2O = 1000 kgm−3 and chondritic rock56

with ρchond = 3500 kgm−3 and that the radiogenic heat production rate for this rock is57

H = 4.5×10−12Wkg−1 (Spohn and Schubert, 2003). The bodies we consider may consist58

of a combination of ice, water, and porous and/or hydrated silicates, so their rocky cores59

will generally not consist of purely chondritic rock. We use each body’s bulk density (ρ̄) to60
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compute the equivalent mass fraction of chondritic rock as f = 1/ρ̄−1/ρH2O

1/ρchond−1/ρH2O
(Hemingway61

and Mittal, 2019). The total radiogenic heat production is then simply HfM where M62

is the body’s total mass, regardless of the core density. This approach accounts for the63

fact that a body with a lower core density (due to hydration or having ice- or water-filled64

pores) produces proportionally less radiogenic heat.65

Text S3: Ice Shell Rigidity66

The magnitude of the radial displacements (the y values discussed in A.2.2) depend67

mainly on the ice shell’s rigidity and viscosity. If the ice shell has very high rigidity, ys68

and yo will be small (yc is small in any case) and the libration amplitude given by (A15)69

approaches the value given by (A13). When the ice shells are thin, and especially for70

the larger bodies, libration amplitudes are lower when the finite rigidity is taken into71

account. For purposes of Figures 1 and 2, we adopt µ=4GPa and η=1020 Pa s for the72

ice shell but, for reference, Figures S6 and S7 illustrate the maximum possible libration73

amplitudes, obtained by assuming an infinitely rigid shell and computing them instead74

via (A13)—the same result is obtained with (A15) when we adopt very large µ and η.75
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Table S1. Satellite properties and libration amplitudes assuming no ocean. Satellite periods,

eccentricities, and masses are from Jacobson (2014). Radii are from Thomas (1988), Widemann

et al. (2009), and Park et al. (2024). Moments of inertia are calculated via (A2) and (A8)

assuming the bodies consist of a water ice mantle (ρice=930 kgm−3) covering a rocky core (with

densities specified in the column headers). γ is calculated via (A11).

Satellite P (days) e M(×1020kg) R(km) ρ̄(kg/m3)
ρcore=2400 kgm−3 ρcore=3500 kgm−3

B−A
C

I
MR2 γR(m) B−A

C
I

MR2 γR(m)

Enceladus 1.3702 0.0047 1.08 252.0 1611.1 1.83e-02 0.332 137.47 1.59e-02 0.301 118.52

Miranda 1.4135 0.0014 0.64 235.8 1165.4 2.53e-02 0.343 52.26 2.47e-02 0.336 50.91

Ariel 2.5204 0.0012 12.51 578.9 1539.4 5.49e-03 0.330 23.67 4.87e-03 0.302 20.95

Umbriel 4.1442 0.0039 12.75 584.7 1522.7 2.04e-03 0.329 28.38 1.82e-03 0.303 25.26

Titania 8.7059 0.0012 34.00 788.9 1653.2 4.34e-04 0.334 2.53 3.73e-04 0.300 2.17

Oberon 13.4632 0.0014 30.76 761.4 1663.6 1.81e-04 0.335 1.16 1.55e-04 0.300 0.99
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Figure S1. Orbital periods versus bulk densities (a) and orbital eccentricities (b) of the large

Uranian moons plus Enceladus and Triton. Body size is indicated by the size of the circles, which

are shown on an arbitrary but common scale.
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Figure S2. Ice shell/ocean thickness uncertainty as a function of shell/ocean thickness and

libration amplitude uncertainty and assuming ρcore = 2400 kgm−3. To the right of the dash-

dotted black line, uncertainties are larger than the ocean thickness, meaning the presence of an

ocean cannot be confirmed. Below the white lines, the ice shell thickness can be constrained to

within 10% (dashed white line), 50% (dash-dotted white line), or 100% (solid white line).
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Figure S3. Same as Figure S2 but assuming ρcore = 3000 kgm−3.
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Figure S4. Total heat loss as a function of shell thickness for each body assuming a conductive

ice shell with a basal (i.e., melting) temperature of T = 273K. See section A.3.
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Figure S5. Total radiogenic heat production as a function of radius and bulk density assuming

that each body is a mixture of ice and rock (see Text S2 for details).
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Figure S6. Same as Figure 1 in the main text but assuming an infinitely rigid ice shell and

therefore with libration amplitudes calculated via (A13) rather than (A15).
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Figure S7. Same as Figure 2 in the main text but assuming an infinitely rigid ice shell and

therefore with libration amplitudes calculated via (A13) rather than (A15).
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