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Figure S1: The ranges of model parameters that best account for the observed gravitational potential and
libration amplitude, given the shape model of (a) Nimmo et al. (2011) or (b) Tajeddine et al. (2017), and
assuming the topography is supported by Airy isostasy (Hemingway and Matsuyama, 2017). Illustrated along
the diagonal are the normalized probability density functions across each of the four model parameters. The
remaining cells in the grid illustrate the joint probability density function for each pair of parameters. The
shaded regions represent 68% (dark), 95% (intermediate), and 99.7% (pale) confidence contours (section 2.6).
The minimum misfits are L = 0.6 and L = 3.2 for the Nimmo et al. (2011) and Tajeddine et al. (2017) shape
models, respectively.
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Figure S2: The ranges of model parameters that best account for the observed gravitational potential, given
the shape model of (a) Nimmo et al. (2011) or (b) Tajeddine et al. (2017), and assuming the topography is
supported by Pratt isostasy. Illustrated along the diagonal are the normalized probability density functions
across each of the four model parameters. The remaining cells in the grid illustrate the joint probability
density function for each pair of parameters. The shaded regions represent 68% (dark), 95% (intermediate),
and 99.7% (pale) confidence contours (section 2.6). The minimum misfits are L = 6.0 and L = 7.0 for the
Nimmo et al. (2011) and Tajeddine et al. (2017) shape models, respectively.
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Figure S3: The ranges of model parameters that best account for the observed gravitational potential, given
the shape model of (a) Nimmo et al. (2011) or (b) Tajeddine et al. (2017), and assuming the topography
is supported by Airy isostasy plus elastic flexure, assuming top loading. Illustrated along the diagonal are
the normalized probability density functions across each of the three model parameters. The remaining cells
in the grid illustrate the joint probability density function for each pair of parameters. The shaded regions
represent 68% (dark), 95% (intermediate), and 99.7% (pale) confidence contours (section 2.6). The minimum
misfits are L = 0.6 and L = 3.3 for the Nimmo et al. (2011) and Tajeddine et al. (2017) shape models,
respectively.
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Figure S4: The ranges of model parameters that best account for the observed gravitational potential, given
the shape model of (a) Nimmo et al. (2011) or (b) Tajeddine et al. (2017), and assuming the topography
is supported by Airy isostasy plus elastic flexure, assuming bottom loading. Illustrated along the diagonal
are the normalized probability density functions across each of the three model parameters. The remaining
cells in the grid illustrate the joint probability density function for each pair of parameters. The shaded
regions represent 68% (dark), 95% (intermediate), and 99.7% (pale) confidence contours (section 2.6). The
minimum misfits are L = 1.0 and L = 3.7 for the Nimmo et al. (2011) and Tajeddine et al. (2017) shape
models, respectively.
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Figure S5: Non-hydrostatic core topography (up to ! = 3 only) required to satisfy gravity observations
perfectly given an external shape described by Tajeddine et al. (2017) and assuming (a) no isostatic com-
pensation, such that the ice/ocean interface follows a hydrostatic equilibrium figure; or (b) the topography
is supported by Airy isostasy, as in section 3.2.3, such that most of the compensation occurs through de-
flection of the ice/ocean interface and that the small remaining gravity anomalies are accommodated by
non-hydrostatic core topography. In this example case, dspenn = 21 km, docean = 37 km, pghenn = 925 kg/m3,
and pocean = 1020kg/m?3.
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Figure S6: Heat anomaly obtained by subtracting the tidal dissipation model results (Figure 11a) from the
inferred heat flux (Figure 11b). Integrated over the surface, the total heat anomaly here is approximately
3GW.
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