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S1. Internal Structure, Pressure, and Gravity

S1.1. Basic interior structure

Consider a simplified model for a planetary body consisting of N concentric spherical

shells of different densities, with the requirement that the densities increase monotonically

inward. The mean density, ρ̄, of such a body is

ρ̄ =
N∑
i=1

∆ρi

(
Ri

R

)3

(S1)

where R is the body’s full radius, Ri is the radius of the ith layer, and ∆ρi is the density

contrast between layer i and the layer above it.

If we relax the assumption of spherical symmetry, we can express the shape of the ith

layer in terms of a spherical harmonic expansion as

Hi (θ, φ) = Ri +
∞∑
l=1

l∑
m=−l

HilmYlm (θ, φ) (S2)

where θ and φ are the colatitude and longitude, respectively, Ylm (θ, φ) are the spherical

harmonic functions for degree-l and order-m [e.g., Wieczorek , 2015], Ri is the mean radius

of the ith layer, and where the coefficients Hilm describe the departure from spherical

symmetry for the ith layer.

S1.2. Internal pressure

The hydrostatic (or lithostatic) pressure at an arbitrary location within the interior is

given by

p (r, θ, φ) =

∫ ∞
r

ρ (r′, θ, φ) g (r′) dr′ (S3)

where ρ (r′, θ, φ) can be determined from the layer shapes, Hi (θ, φ), given the assump-

tion of uniform density within each layer (ρi), and where the radial component of the
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gravitational acceleration is given by

g (r) = 4πG
1

r2

∫ r

0

ρ (r′) r′2dr′ (S4)

where we neglect the small lateral variation in gravitational acceleration that arises be-

cause of the topography (Hilm). For sufficiently simplified interior models, the internal

hydrostatic pressure can be computed analytically by substituting (S4) into (S3) and

integrating, as we have done in order to produce Figure 1 in the main text.

It will become useful to define the mean density below radius r as

ρ̄r =
M(r)
4
3
πr3

=
3

r3

∫ r

0

ρ (r′) r′2dr′ (S5)

allowing us to express the gravitational acceleration as

g (r) =
4

3
πGrρ̄r (S6)

S1.3. Gravitational potential

The gravitational potential at an arbitrary location, following the convention of the

potential being everywhere negative, is given by [e.g., Hubbard , 1984]

U (r, θ, φ) = −4πG

(
1

r

∫ r

0

ρ (r′) r′2dr′ +

∫ R

r

ρ (r′) r′dr′
)

+ ∆U (r, θ, φ) (S7)

where ∆U (r, θ, φ) represents the asymmetric part of the potential, and is given by

∆U (r, θ, φ) = U rot (r, θ, φ) + U tid (r, θ, φ) +
∞∑
l=1

l∑
m=−l

Ulm (r)Ylm (θ, φ) (S8)

where U rot and U tid are the laterally varying rotational and (if applicable) tidal potentials,

respectively, given by

U rot (r, θ, φ) = ω2r2

(
−1

3
+

1

3
Y20 (θ, φ)

)
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and (for a tidally locked satellite)

U tid (r, θ, φ) = ω2r2

(
1

2
Y20 (θ, φ)− 1

4
Y22 (θ, φ)

)
where ω is the spin period. The coefficients Ulm in (S8) account for the gravitation asso-

ciated with the topography and thus depend on the layer shapes and densities (assumed

uniform within each layer), and are given by

Ulm (r) = − 4πGr

2l + 1

N∑
i=1

∆ρiHilm


(
Ri

r

)l+2
r ≥ Ri(

r
Ri

)l−1

r < Ri

(S9)

The gravitational potential exterior to the body (r ≥ R) can also be expressed as

U (r, θ, φ) = −GM
r

∞∑
l=0

l∑
m=−l

(
Rref

r

)l
ClmYlm (θ, φ) (S10)

where M is the total mass of the body, and where Clm are dimensionless gravitational

potential coefficients, with C00 = 1 by definition, and with the other coefficients being

obtained by evaluating (S9) at some reference radius, Rref, and dividing by −GM/Rref,

yielding

Clm =
3

2l + 1

(
R2

ref

ρ̄R3

) N∑
i=1

∆ρiHilm

(
Ri

Rref

)l+2

(S11)

where again, R is the body’s mean radius, which in general may differ from the reference

radius, Rref. If Rref = R, then

Clm =
3

2l + 1

(
1

ρ̄R

) N∑
i=1

∆ρiHilm

(
Ri

R

)l+2

(S12)

S1.4. Gravitational acceleration

In spite of the lateral variations in gravitational acceleration being small enough to

neglect for purposes of computing the internal pressure, we are sometimes concerned

with the magnitude of these small lateral variations, or gravity anomalies. These gravity
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anomalies, evaluated at or above the surface (r ≥ R), can be obtained by differentiating

(S9) with respect to r to get the (positive downward) gravitational acceleration

glm (r) =
l + 1

2l + 1
4πG

N∑
i=1

∆ρiHilm

(
Ri

r

)l+2

(S13)

When the potential is instead expressed in terms of the dimensionless potential coeffi-

cients, Clm, the equivalent result is obtained by differentiating (S10) to get

glm (r) = (l + 1)
GM

r2

(
Rref

r

)l
Clm (S14)

S1.5. Radial variation in gravity

As we showed in the main text, the radial variation in gravity is relevant to the iso-

static equilibrium problem and has implications for spectral admittance and gravity-to-

topography ratio (GTR) models. From (S6), it is clear that the ratio of the mean surface

gravity (gt) to the mean gravity at the base of the crust (gb) is

gt
gb

=
ρ̄Rt

ρ̄bRb

(S15)

where ρ̄ is the body’s mean density and ρ̄b is the mean density of all the material below

the base of the crust. Using (S1), it can be further shown that, if the crustal density is

ρc, such that

ρ̄ = ρc + (ρ̄b − ρc)
(
Rb

Rt

)3

(S16)

then

gt
gb

=
(Rb/Rt)

2

1 +
(
(Rb/Rt)

3 − 1
)
ρc
ρ̄

(S17)

The ratio gt/gb thus depends only on the relative compensation depth (d/Rt, where

d = Rt − Rb) and the internal density structure, the relevant part of which is effectively

captured in the ratio ρc/ρ̄ (Figure S1).
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S2. Airy vs Pratt Isostasy

In the main text, we focused on the case of Airy isostasy, wherein the topography is

supported by buoyant roots at the base of the crust (Figure S2a). In Pratt isostasy,

the topography is supported instead by lateral variations in crustal density (Figure S2b).

The problem of modeling Pratt-type isostatic compensation can be framed as the need to

compute the lateral variations in crustal density required to eliminate lateral pressure gra-

dients at the depth of compensation (d = Rt−Rb). Given the known surface topography

(ht) and assuming a Cartesian geometry with constant gravity, we have

ρcgd = (ρc + δρ) g (d+ ht) (S18)

from which it follows that

δρ = −ρc

(
ht

d+ ht

)
(S19)

Provided that |ht| � d, we can linearize (S19) to obtain the more convenient expression

δρ = −ρc

(
ht
d

)
(S20)

Whereas this Cartesian formulation is adequate in most cases, we wish to examine

the effect of taking the spherical geometry into account. Here again we examine the

two distinct conceptions of the condition of isostatic equilibrium in spherical coordinates:

1) the requirement of equal masses in columns of equal solid angle; and 2) the requirement

of the absence of lateral pressure gradients at depth, where pressure is assumed to be

hydrostatic. Figure S2b illustrates a cross section of a two-layer body having a crust with

mean density ρc. The left hand side of the figure shows a part of the body with zero

topography with respect to the mean radius Rt. The right hand side of the figure shows a
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part of the body with some positive topographic anomaly at the top of the crust (ht > 0)

and a corresponding crustal density anomaly, δρ.

S2.1. Equal Masses Pratt Isostasy

Equating the wedge mass in the absence of the topographic anomaly (left side of Fig-

ure S2b) with the wedge mass in the presence of the topographic anomaly (right side of

Figure S2b), yields

ρc

∫ Rt

Rb

r2dr = (ρc + δρ)

∫ Rt+ht

Rb

r2dr

After integrating and some manipulation, and making use of a substitution for the

crustal thickness (d = Rt −Rb), we obtain

δρ

(
1

3

(
1 +

Rb

Rt

+

(
Rb

Rt

)2
)
d+

(
1 +

ht
Rt

+
h2
t

3R2
t

)
ht

)
= −ρc

(
1 +

ht
Rt

+
h2
t

3R2
t

)
ht

As long as |ht| � Rt, we can say that

δρ ≈ −ρc

 ht

1
3

(
1 + Rb

Rt
+
(
Rb

Rt

)2
)
d+ ht

 (S21)

As expected, this expression converges to the Cartesian equivalent, (S19), when the

compensation depth is shallow (as Rb → Rt).

Provided that |ht| � d, we can again linearize (S21) to obtain

δρ ≈ −ρc

(
ht
d

) 3

1 + Rb

Rt
+
(
Rb

Rt

)2

 (S22)

S2.2. Equal Pressures Pratt Isostasy

Equating the hydrostatic pressure in the absence of the topographic anomaly (left side

of Figure S2b) with the hydrostatic pressure in the presence of the topographic anomaly
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(right side of Figure S2b), in both cases evaluated at r = Rd, we obtain

δρ

∫ Rt+ht

Rb

g (r) dr = −ρc

∫ Rt+ht

Rt

g (r) dr

Once again, if |ht| � Rt, then over the small radial distance between Rt and Rt+ht, the

integrand on the right hand side has a nearly constant value of gt, so the right hand side of

this equation becomes≈ −ρcgtht. The integral on the left hand side is less straightforward.

However, if we assume that the gravity varies linearly from a value of gb at the base of the

crust to gt at and near the top of the crust, then we can approximate this integral by a

trapezoidal region of width d+ ht and starting and ending heights gb and gt, making the

left hand side of this equation ≈ δρ
(
gt+gb

2

)
(d+ ht) (this approximation is good to within

2% as long as ρc/ρ̄ > 0.3 and Rb/Rt > 0.8). The result is

δρ ≈ −ρc

(
ht

d+ ht

)(
2

1 + gb
gt

)
(S23)

As expected, this expression likewise converges to the Cartesian equivalent, (S19), when

the gravity at the compensation depth is similar to the surface gravity (i.e., as gb → gt).

Provided that |ht| � d, we can linearize (S23) to obtain

δρ ≈ −ρc

(
ht
d

)(
2

1 + gb
gt

)
(S24)

Compared with the “equal pressures” condition, the “equal masses” condition always

overestimates the magnitude of the lateral density variations (Figure S3b).

S2.3. Implications under Pratt model

S2.3.1. Spectral Admittance under Pratt isostasy

Under the model of Pratt compensation, we must abandon the assumption of uniform

density within each layer, meaning that equation (S9) is no longer sufficient to describe
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the asymmetries in the potential. If the non-hydrostatic topography is limited to the

surface (Htlm), and if the lateral density variations (ρlm) are confined to the outermost

layer (the crust), and do not vary radially within that layer, then the asymmetries in the

gravitational potential, evaluated at or above the surface (r ≥ Rt), are given by

Ulm (r) = − 4πGr

2l + 1

(
(ρc + ρlm)Htlm

(
Rt

r

)l+2

+ ρlm

∫ Rt+Htlm

r′=Rb

(
r′

r

)l+2

dr′

)

The first term represents the effect of the extra mass associated with the surface topog-

raphy (Htlm) and the second term represents the effect of the lateral density variations

within the crust (ρlm). When the density variations are small compared with the mean

crustal density (ρlm � ρc) and when the surface relief is small compared with the mean

crustal thickness (Htlm � Rt − Rb), we can neglect the terms in (ρlmHtlm), and this

expression simplifies to

Ulm (r) = − 4πGr

2l + 1

(
ρcHtlm

(
Rt

r

)l+2

+ ρlm

∫ Rt

r′=Rb

(
r′

r

)l+2

dr′

)
(S25)

Differentiating (S25) with respect to r, we obtain the (positive downward) gravitational

acceleration, which we evaluate at r = Rt to get

glm (Rt) =
l + 1

2l + 1
4πG

(
ρcHtlm +

Rt

(l + 3)

(
1−

(
Rb

Rt

)l+3
)
ρlm

)

Setting ρlm to the linearized expression in equation (S20), we then obtain

glm (Rt) =
l + 1

2l + 1
4πG

(
ρcHtlm −

1

(l + 3)

(
1−

(
Rb

Rt

)l+3
)(

ρcHtlm

1− Rb

Rt

))

from which it follows that the spectral admittance is

Zl =
l + 1

2l + 1
4πGρc

1− 1

(l + 3)

1−
(
Rb

Rt

)l+3

1− Rb

Rt


 (S26)
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Using the “equal masses” equation (S22) instead yields

Zl =
l + 1

2l + 1
4πGρc

1− 1

(l + 3)

1−
(
Rb

Rt

)l+3

1− Rb

Rt


 3

1 + Rb

Rt
+
(
Rb

Rt

)2


 (S27)

Finally, the “equal pressures” equation (S24) leads to

Zl =
l + 1

2l + 1
4πGρc

1− 1

(l + 3)

1−
(
Rb

Rt

)l+3

1− Rb

Rt

( 2

1 + gb
gt

) (S28)

As with the case of Airy compensation (Figure 2), the “equal masses” model for Pratt

compensation underestimates the admittance (Figure S4) compared with the “equal pres-

sures” model. The discrepancy is especially pronounced at the lowest spherical harmonic

degrees (longest wavelengths) and when compensation depths are large. Compared with

the Airy model, admittances computed assuming a Pratt model increase more gradually,

both with increasing compensation depth (Figure S4a) and increasing spherical harmonic

degree (Figure S4b). That is, for a given spherical harmonic degree, a Pratt model will

require a larger compensation depth to produce the same admittance.

S2.3.2. Geoid-to-topography ratio (GTR) under Pratt isostasy

Evaluating (S25) at r = Rt, we obtain

Ulm (Rt) = −4πGRt

2l + 1

(
ρcHtlm + ρlm

Rt

(l + 3)

(
1−

(
Rb

Rt

)l+3
))

from which it follows that the dimensionless gravitational potential coefficients of (S10)

become

Clm =
3

2l + 1

(
ρc
Rtρ̄

)(
Htlm +

ρlm
ρc

Rt

(l + 3)

(
1−

(
Rb

Rt

)l+3
))

Assuming complete Pratt compensation, with the lateral density variations computed

according to equation (S20), the geoid-to-topography ratio, given by equations (14) and
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(15), becomes

GTR =
lmax∑
l=lmin

Wl

(
3

2l + 1

)(
ρc
ρ̄

)1− 1

(l + 3)

1−
(
Rb

Rt

)l+3

1− Rb

Rt




When the lateral density variations are computed according to the “equal masses”

equation (S22), we have

GTR =
lmax∑
l=lmin

Wl

(
3

2l + 1

)(
ρc
ρ̄

)1− 1

(l + 3)

1−
(
Rb

Rt

)l+3

1− Rb

Rt


 3

1 + Rb

Rt
+
(
Rb

Rt

)2




(S29)

Finally, using instead the “equal pressures” equation (S24), we have

GTR =
lmax∑
l=lmin

Wl

(
3

2l + 1

)(
ρc
ρ̄

)1− 1

(l + 3)

1−
(
Rb

Rt

)l+3

1− Rb

Rt

( 2

1 + gb
gt

) (S30)

For reference, the dipole moment approximation [Ockendon and Turcotte, 1977; Haxby

and Turcotte, 1978] gives

GTR =

(
3

4

)(
ρc
ρ̄

)(
1− Rb

Rt

)
(S31)

As with the case of Airy compensation, the “equal masses” model always underestimates

the GTR, or equivalently, overestimates the compensation depth corresponding to a given

measured GTR (Figure S5). The relative differences between the “equal masses”, “equal

pressures”, and “dipole moment” models are similar under either Airy or Pratt isostasy.

The most significant difference between the Airy and Pratt models is that the Pratt

model gives much smaller (roughly half the magnitude) GTRs for any given compensation

depth. Equivalently, for a given GTR, the Pratt model requires a significantly larger

compensation depth.
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S3. Applications

In the main text section 3.3, we discussed several examples of how crustal thickness

estimates are affected when the “equal pressures” model for Airy isostatic equilibrium is

adopted in place of the “equal masses” model.

S3.1. The Moon and Mars

Here we reproduce Figure 3a from Wieczorek and Phillips [1997], but with one addi-

tional curve, corresponding to the “equal pressures” model described by equation (19)

(Figure S6a). We likewise reproduce Figure 1 from Wieczorek and Zuber [2004], again

with the additional “equal pressures” curve (Figure S6b). In both cases, we compute

the power spectra anew using more recent topography models—namely degree and order

2600 spherical harmonic models for the lunar and Martian topography (both available at

markwieczorek.github.io, and ultimately sourced from LOLA and MOLA gridded data

products available on NASA’s planetary data system). While we also repeated the GTR

computations from these and recent gravity models—namely the degree and order 420

GRAIL model for the Moon and the degree and order 120 MRO model for Mars (both

available on NASA’s planetary data system)—we did this only as a sanity check to en-

sure that our GTR values would be similar to those of Wieczorek and Phillips [1997] and

Wieczorek and Zuber [2004]. Rather than attempting to reproduce the masks required to

isolate the highland regions of interest in both cases, we simply used the highlands-only

GTR values obtained by Wieczorek and Phillips [1997] and Wieczorek and Zuber [2004].

Whereas the GTRs for the nearside lunar highlands were given explicitly in Wieczorek
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and Phillips [1997], we worked backwards from the reported crustal thickness estimates

of Wieczorek and Zuber [2004] to obtain the GTRs for the Martian highlands.

S3.2. Enceladus

We can also compute admittance as a function of compensation depth for the case

of Enceladus and compare it to the observed value (Figure S7). The observed degree-

3 admittance [Iess et al., 2014] of 14 ± 2.8 mGal/km suggests a compensation depth

of of 30 ± 6 km when the “equal masses” model is used, but just 17 ± 4 km when the

“equal pressures” model is used instead. This example serves to illustrate that, when the

available gravity/topography data are limited to the lowest spherical harmonic degrees,

the compensation depth estimate is extremely sensitive to the difference between “equal

masses” and “equal pressures “ isostasy.
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Figure S1. Relationship between surface gravity (gt) and the gravity at the base of

the crust (gb) as a function of relative compensation depth (d/Rt, where d = Rt − Rb),

for various internal density structures (described by the ratio of the crustal density to the

body’s bulk density, ρc/ρ̄).
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Figure S2. Comparison of two hydrostatically supported wedges under the assumptions

of Airy (a) and Pratt (b) isostatic equilibrium. In both cases, the left hand side of the

figure shows a region having no topography with respect to the reference surface Rt,

while on the right, there is a topographic anomaly of height ht. In the Airy case (a), the

topography is compensated by an accompanying isostatic root at the base of the crust.

In the Pratt case (b), the nominal crustal density is ρc but the crust coinciding with the

topographic anomaly has density ρc + δρ (when ht is positive, δρ is negative).
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Figure S3. Comparison between “equal masses” (EM) and “equal pressures” (EP)

isostasy models as a function of compensation depth and the body’s internal density

structure (characterized by the ratio ρc/ρ̄). For Airy isostasy (a), this is the factor by

which the amplitude of the basal topography is overestimated by the “equal masses”

model. For Pratt isostasy (b), this is the factor by which the magnitude of the lateral

density variations are overestimated by the “equal masses” model. The discrepancy be-

comes more pronounced with increasing compensation depth and with decreasing surface

density to bulk density ratios (ρc/ρ̄).
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Figure S4. Admittance under Pratt isostasy. (a) Admittance as a function of relative

compensation depth (d/R) for various example spherical harmonic degrees. (b) Spectral

admittance for various examples of relative compensation depths. Dashed lines show

admittance as computed via (S27), which assumes equal masses in equal columns. Solid

lines show admittance as computed via (S28), which eliminates lateral pressure gradients

at depth. The “equal masses” conception of isostasy always leads to underestimating

the admittance, especially at low spherical harmonic degrees (long wavelengths). In both

panels, admittance is normalized to an assumed crustal density of 1000 kg/m3 (i.e., if the

crustal density is 2000 kg/m3, all admittance values double). Equation (S28) also depends

weakly on the internal density structure, which is here arbitrarily defined by ρc/ρ̄ = 0.6.

(cf. main text Figure 2.)
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Figure S5. Geoid-to-Topography Ratio (GTR) as a function of relative compensation

depth (d/R). Dotted blue line shows GTR computed via (S31), using the linear dipole

moment approximation. Dashed red line shows GTR computed via (S29), which assumes

equal masses in equal columns. Solid gold line shows GTR computed via (S30), which

avoids lateral pressure gradients at depth. The internal density structure is again arbi-

trarily defined by ρc/ρ̄ = 0.6. The sum in (14) is taken from lmin = 3 to lmax = 70. The

weighting coefficients are obtained from (16) by assuming a synthetic power spectrum

defined by Shh = Al−1.5, where A is an arbitrary constant.
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Figure S6. Geoid-to-Topography Ratio (GTR) as a function of crustal thickness.

Dotted blue line shows GTR computed via (20), using the linear dipole moment approx-

imation. Dashed red line shows GTR computed via (18), which assumes equal masses in

equal columns. Solid gold line shows GTR computed via (19), which avoids lateral pressure

gradients at depth. The grey bands represent the observed GTRs. Panel (a) represents

the case of the nearside lunar highlands with ρc = 2900 kg/m3 such that ρc/ρ̄ ≈ 0.87,

where the sum is taken from lmin = 3 to lmax = 70, and where the weighting coefficients

are obtained using a power spectrum derived from a degree and order 2600 LOLA-based

spherical harmonic model (cf. Figure 3a in Wieczorek and Phillips [1997]). Panel (b)

represents the case of the Martian highlands with ρc = 2900 kg/m3 such that ρc/ρ̄ ≈ 0.74,

where the sum is taken from lmin = 11 to lmax = 70 (cf. Figure 1 in Wieczorek and Zuber

[2004]), and where we use a degree and order 2600 MOLA-based topography model.
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Figure S7. Degree-3 admittance as a function of compensation depth for Enceladus.

Dashed line shows admittance as computed via (12), which assumes equal masses in equal

columns. Solid line shows admittance as computed via (13), which eliminates lateral

pressure gradients at depth. Grey shaded region indicates degree-3 admittance obtained

from the observed gravity and topography [Iess et al., 2014; Nimmo et al., 2011].


