
1.  INTRODUCTION

1.1.  Motivation

The internal structure of a planetary body provides es-
sential clues about its origin and evolution. Based on its 
internal density structure, what is the likely composition of 
the materials from which the body formed (see the chapter 
in this volume by McKinnon et al.)? Did the interior become 
sufficiently warm to enable differentiation, with heavier 
components sinking toward the center? How quickly or 
slowly did the body form? What does the structure of the 
near surface and deeper interior tell us about the nature of 
the topography and the distribution of geologic provinces 
across the surface?

The interior of Enceladus is of particular interest because 
of the complex tectonic structures that cover much of its 
unusually youthful surface (see chapter in this volume by 
Patterson et al.) and, most strikingly, because of the ongo-
ing eruptions of water vapor and ice grains from its south 

polar region (see chapters in this volume by Postberg et al., 
Goldstein et al., and Spencer et al.). Are these eruptions 
sourced from a potentially habitable subsurface liquid water 
reservoir? If so, how deep is the reservoir beneath the icy 
surface? How thick is the icy crust? What is the structure of 
the crust and how does it support the surface topography? 
How is the liquid water, which is not buoyant with respect 
to the ice, transported to the surface? How does the inte-
rior respond to tidal stresses? What modulates the eruptive 
activity at the south pole? How large is the internal sea or 
ocean, and how does it keep from freezing solid? What is the 
composition and nature of the core, and what is its capacity 
for contributing to the heating of the interior?

Although the internal structure cannot be observed di-
rectly, a variety of techniques are available for building a 
picture of the interior that can help to address many of these 
questions. Seismic imaging has proven to be the definitive 
technique for constraining the structure of Earth’s interior, 
and seismic stations placed on the Moon during the Apollo 
program have likewise helped to improve our understanding 
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of the Moon’s interior. However, although seismic stations 
may soon be deployed on Mars and other worlds, the study 
of planetary interiors aside from Earth and the Moon has so 
far had to rely on other methods. In particular, as we will 
discuss in detail in this chapter, studies of shape, gravita-
tional fi elds, and rotational dynamics can place constraints 
on planetary interiors, and have enabled signifi cant advance-
ments in our emerging understanding of Enceladus.

1.2.  Key Observations and Basic Picture

Prior to the Cassini spacecraft’s arrival in the Saturn 
system in 2004, our knowledge of Enceladus was limited 
to what could be inferred from telescopic observations 
and the data collected during the Saturn system fl ybys of 
Pioneer 11 in 1979 and the two Voyager spacecraft in 1980 
and 1981. However, even these early observations led to 
considerable interest in Enceladus due to its unusually high 
albedo (Buratti and Veverka, 1984) and apparently youthful 
icy surface (Smith et al., 1982; Clark et al., 1983; Squyres 
et al., 1983), as well as its relationship to Saturn’s E ring 
(Baum et al., 1981; Haff et al., 1983; Pang et al., 1984), all 
of which pointed to the incredible possibility of recent, or 
even ongoing, geologic activity on this tiny moon. Given 
the apparent history of geologic activity, and incorporating 
mass estimates based on astrometric observations (Kozai, 
1976; Jacobson, 2004), basic interior models were devel-
oped for a differentiated Enceladus (Zharkov et al., 1985), 
but were limited by the large uncertainties regarding its 
size and shape. 

Beginning in 2005, the Cassini mission, which included 
numerous fl ybys of Enceladus, led to a series of remarkable 
observations that reinforced Enceladus’ status as one of the 
most compelling exploration targets in the solar system, and 
provided clues about the nature of its interior. In particular, 
several of Cassini’s instruments detected water vapor and 
organic molecules in the vicinity of Enceladus’ south pole 
(Brown et al., 2006; Dougherty et al., 2006; Hansen et al., 
2006; Spahn et al., 2006; Spencer et al., 2006; Waite et al., 
2006), and spectacular back-lit images revealed the source of 
this material to be a series of ongoing eruptions concentrated 
along four major fi ssures spanning the highly tectonized south 
polar terrain (SPT) (Porco et al., 2006). Subsequent obser-
vations identifi ed high heat fl ow emanating from the south 
polar region and especially at the sites of the most prominent 
eruptions (Spitale and Porco, 2007; Howett et al., 2011). 
The ongoing activity led to the suggestion that a subsurface 
sea might be feeding the eruptions (Collins and Goodman, 
2007) and producing a topographic depression at the south 
pole, helping to explain the anomalous shape (Thomas et al., 
2007). The fi nding that the erupted ice grains contained salts 
(Postberg et al., 2009, 2011) further supported the notion 
of an internal liquid water reservoir. On the other hand, the 
limited presumed available tidal heating energy (Meyer and 
Wisdom, 2007), together with the rapid heat loss, suggested 
that an internal sea should have frozen solid in just tens of 
millions of years (Roberts and Nimmo, 2008).

A major advancement in our knowledge of the interior 
came with Doppler tracking of the Cassini spacecraft dur-
ing close encounters with Enceladus (Rappaport et al., 
2007), and especially with the determination of Enceladus’ 
quadrupole gravity fi eld and hemispherical asymmetry, once 
enough fl yby results had been accumulated (Iess et al., 
2014). In combination with improved models of the topog-
raphy (Thomas et al., 2007; Nimmo et al., 2011), the gravity 
data provided the fi rst opportunity to effectively probe the 
interior, yielding an estimate of the degree of differentiation, 
and identifying mass anomalies suggestive of a (possibly 
global) subsurface liquid ocean. Subsequent measurement of 
the forced physical librations (Thomas et al., 2016) indepen-
dently confi rmed that the icy crust must be fully decoupled 
from the deep interior, indicating that the internal ocean must 
indeed be global. Although detailed interpretation of these 
observations is complicated and remains an active area of 
research (e.g., Čadek et al., 2016, 2017; van Hoolst et al., 
2016; Beuthe et al., 2016; Hemingway and Mittal, 2017), 
the general conclusion is that Enceladus is differentiated, 
with an icy shell covering a global subsurface liquid water 
ocean, overlying a low-density rocky core (Fig. 1).

In this chapter, we examine the relevant theory and 
discuss the constraints that can be placed on the internal 
structure of Enceladus based mainly on the gravity and 
libration observations (sections 2 and 3, respectively). We 
also discuss the implications for the thermal state of Ence-
ladus and, in particular, the structure and dynamics of its 
icy shell (section 4). Finally, we discuss the remaining open 

Fi g. 1.  Approximate interior structure of Enceladus (to 
scale). Its 252-km radius comprises a ~190-km-radius core 
with a density of ~2400 kg m–3, surrounded by layers of 
liquid and solid H2O making up the remaining ~60 km. The 
ice shell and ocean layer thicknesses vary laterally, with the 
thinnest part of the ice shell (and thickest part of the ocean) 
being centered on the south pole (see Table 3).
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questions and how future observations and modeling might 
help to address them (section 5).

2.  IMPLICATIONS FROM GRAVITY

Gravity is a powerful tool for studying planetary interiors 
because a body’s gravitational field is ultimately a function 
of its internal mass distribution. While the problem of invert-
ing gravity for interior structure suffers from inherent non-
uniqueness, with a few reasonable assumptions, it is never-
theless possible to draw useful conclusions. For example, 
it is often reasonable to assume that large planetary bodies 
have interiors that are weak on long timescales, meaning 
that they tend to relax to near spherical symmetry, and that 
their internal densities do not generally increase with radial 
position — a situation that would be gravitationally unstable. 

A straightforward approach to interior modeling is there-
fore to treat the body as a series of concentric spherical 
shells of different densities, with the requirement that the 
densities increase monotonically inward. The mean density, 
r−, of such a body is given by
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where R is the body’s full radius, Ri is the outer radius of 
the ith layer, and Dri is the density contrast between layer i 
and the layer above it. This formulation implicitly assumes 
uniform density within each layer, which is appropriate 
only when internal pressures are small enough not to cause 
significant compression. For larger bodies, where compres-
sion may be important, equations of state are required to 
model the radial dependence of density on temperature and 
pressure. We proceed here assuming that compression is not 
important in the interior of Enceladus.

The body’s normalized mean moment of inertia (or mo-
ment of inertia factor) is given by
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Although there are generally more than two unknowns, 
necessitating additional assumptions, these two equations 
provide fundamental constraints on the internal structure. 
The mean density can be determined directly from the mass 
and radius, and immediately restricts the range of possible 
bulk compositions. But the moment of inertia, which reflects 
density stratification, must be determined via other means.

The three principal moments of inertia can be defined as
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where r is the density of a volume element dV, at position x, 
y, z within the body. Here, the principal frame is a coordinate 
frame centered on the body with the z-axis coincident with 
the spin pole, the x-axis pointing toward the prime merid-
ian, and the y-axis completing the righthanded system (for 
synchronous satellites in circular orbits, the x-axis points 
along the long axis, toward the parent body). Differences 
in these principal moments of inertia are important because 
they can, in some cases, be related to observable rotational 
dynamical effects such as spin pole precession, obliquity, 
nutation, and librations (e.g., van  Hoolst, 2015)  — the 
subject of section 3 of this chapter; or to asymmetries in 
the gravitational field — the subject of the rest of this sec-
tion. In the limit of perfect spherical symmetry, a body’s 
gravitational field would be equivalent to that of a point 
mass located at its center and, apart from the mean density, 
little could be concluded about the interior. Real planetary 
bodies, however, exhibit asymmetries that effectively carry 
information about their internal structures.

The case of Enceladus is interesting and instructive for 
several reasons. Because of the short period of its orbit 
around Saturn (1.37 days), the asymmetries in its shape and 
gravity (primarily due to tidal and rotational deformation) 
are large, permitting unprecedented relative precision in 
their measurement. This precision presents both challenges 
(it forces us to abandon the usual simplifying assumption 
of hydrostatic equilibrium) and opportunities (it allows us 
to estimate the thickness of the icy crust via analysis of the 
non-hydrostatic gravity and topography), forcing the devel-
opment of new methods for interior modeling from shape 
and gravity (Hemingway et al., 2013b; Iess et al., 2014; 
McKinnon, 2015; Čadek et al., 2016; Beuthe et al., 2016). 
Finally, the special circumstance of the substantial north-
south polar asymmetry associated with the SPT provides 
an opportunity for independent analysis of long-wavelength 
gravity and topography.

In section 2.1, we discuss how rotational and tidal effects 
lead to characteristic asymmetries in a body’s shape and, 
consequently, its gravitational field, and how the magnitude 
of those asymmetries is related to the internal mass distribu-
tion. To do this, we introduce several concepts, including 
gravitational potential and the ways it is affected by tidal and 
rotational forces; hydrostatic equilibrium figure theory; and 
Love numbers and their connection to the principal moments 
of inertia and, ultimately, the density stratification within the 
body. In section 2.2, we discuss how the gravitational field 
of Enceladus has been measured based on radio tracking 
of the Cassini spacecraft during three close flybys. Finally, 
in section 2.3, we discuss the interpretation of those mea-
surements, including some of the subtleties and challenges 
associated with interior modeling.

2.1.  Theory

2.1.1.  Hydrostatic equilibrium.  For planetary bodies 
that are sufficiently large, the combination of high internal 
pressures and low internal viscosities (especially true when 
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there is appreciable internal heating) results in relaxation to 
a figure that approaches the expectation for a strengthless 
fluid body, in which the inward acceleration due to grav-
ity is everywhere balanced by the gradient in fluid pres-
sure — a condition referred to as hydrostatic equilibrium 
and described by the equation dp = –rgdr, where p, r, g, 
and r are the pressure, local density, local gravity, and radial 
position, respectively.

Under the influence of self-gravitation alone, the hydro-
static equilibrium figure would be a sphere. Because of their 
rotation, however, planetary bodies also experience centrifu-
gal flattening. In addition, satellites that are in synchronous 
rotation with their parent bodies (i.e., tidally locked) also 
experience permanent elongation along the static tidal axis. 
This applies to most of the large natural satellites in the solar 
system because of the short timescale associated with tidal 
locking (e.g., Gladman et al., 1996; Murray and Dermott, 
1999). The tidal and rotational deformation results in an 
asymmetry in the equilibrium figure — and consequently the 
gravitational field — of synchronous satellites like Enceladus.

2.1.2.  Gravitational potential.  A body’s Newtonian gravita‑ 
tional potential, U, resolved at an arbitrary position r, is a 
function of its internal mass distribution, and is given by
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where r(r′) is the density at position r′, where G is the 
universal gravitational constant, and where the integral is 
performed over the body’s entire volume, V. The potential 
represents the work per unit mass done by the gravitational 
field and gives rise to the gravitational acceleration g = –∇U.

Everywhere outside the body, the gravitational potential 
satisfies Laplace’s equation, ∇2U(r) = 0, and can be expressed 
as a linear combination of spherical harmonic functions as
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where M is the total mass of the body, r is the radius at 
which the potential is to be expressed, q is colatitude, f 
is longitude, Clm are the degree-l and order-m spherical 
harmonic expansion coefficients representing the dimen-
sionless gravitational potential at the reference radius Rref, 
and where Ylm are the spherical harmonic functions — the 
natural set of orthogonal basis functions on a sphere (e.g., 
Wieczorek, 2015).

2.1.3.  Tidal/rotational disturbing potential.  The tidal 
and rotational forces that cause planetary bodies to deviate 
from spherical symmetry can be described in terms of dis-
turbances in the potential field. For instance, the centrifugal 
acceleration at a point on the surface of a spherical body 
with radius R and spin rate w is w2x, where x = R sin q  x̂ 
is a vector pointed outward from, and perpendicular to, the 
axis of rotation and reaching the surface at colatitude q. This 
acceleration can be expressed as the negative gradient of a 
centrifugal disturbing potential, –∇Vcf, where 

	 V Rcf 1
2

2 2 2ω θsin– 	 (6)

For convenient comparison with equation  (5), we can 
rewrite the centrifugal disturbing potential in terms of the 
degree-2 Legendre polynomial, P2(cos q) = 1

2(3 cos2 q–1), 
as Vcf(q,f) = 1

3w2R2(P2(cos q)–1). Since the last term is a 
constant, its gradient is zero, meaning that it gives rise to 
no deforming forces. As such, many authors do not include 
it, and we will likewise disregard it from here on. Finally, 
we can write the centrifugal disturbing potential (excluding 
the constant term) in terms of the degree-2 zonal spherical 
harmonic function, Y20(q,f), as

	 V R Ycf θ φ ω θ φ, ,( ) ( ) = 1
3

2 2
20 	 (7)

In addition to the effects of rotation, satellites experi-
ence a tidal disturbing potential due to the spatially varying 
difference between their gravitational acceleration toward 
the parent body and the outward centrifugal acceleration 
associated with their orbital motion. To second order, it can 
be shown (e.g., Murray and Dermott, 1999, p. 133) that the 
net tidal disturbing potential is
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where m is the mass of the parent body, a is the distance 
between the centers of the two bodies, and y is the angle 
from the axis connecting the centers of the two bodies to an 
arbitrary point on the satellite’s surface. If the parent body 
is much more massive than the satellite (m ? M), and the 
satellite’s orbit is synchronous with its mean rotation rate, 
then w2 ≈ Gm/a3. And if the satellite’s spin axis is nearly 
normal to its orbital plane (i.e., its obliquity is close to zero), 
then we can rewrite the angle y in terms of colatitude and 
longitude as cos y ≈ cos f sin q. Both of these conditions 
are satisfied in the present case because Saturn is more than 
a million times as massive as Enceladus, whose obliquity 
is <0.001 (Chen and Nimmo, 2011; Baland et al., 2016). 
Incorporating these approximations, it can be shown that

	 V R Y Ytid θ φ ω θ φ θ φ, , ,( ) ( ) ( )( ) = 2 2 1
2 20

1
4 22– 	
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Adding equations (7) and (9) yields the combined effect 
of the tidal and rotational disturbing potentials

	 V R Y Yθ φ ω θ φ θ φ, ,( ) ( ) ( )( ) = 2 2 5
6 20

1
4 22– 	 (10)

2.1.4.  Equilibrium figure theory.  To the extent that the 
body can be treated as a hydrostatic fluid, its equilibrium 
figure will conform to an equipotential. The effect of the 
disturbing potential, V(q,f), is that the surface of the initially 
spherically symmetric body will no longer be equipotential. 
To first order, and before any deformation has taken place, 
the resulting change in elevation of the equipotential surface 
is –V(q,f)/g (since g is the gradient of the gravitational po-
tential). In response to the disturbing potential, the body’s 
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figure will relax toward the new equipotential surface. 
However, in so doing, the body’s mass distribution is altered, 
effectively causing a small additional disturbance in the 
gravitational potential. Accounting for this self-gravitation 
effect, the hydrostatic equilibrium figure can be written

	
H R

V
g

hfθ φ
θ φ,( ) ( )

 = –
	

(11)

where hf is the fluid Love number for the figure, a sca-
lar quantity describing the magnitude of the body’s long 
timescale (zero frequency) deformation in response to the 
disturbing potential. An infinitely rigid body would have hf = 
0, whereas a perfectly homogeneous fluid body has hf = 5

2 
(the value is larger than unity because of the aforementioned 
self-gravitation); fluid bodies with some internal density 
stratification have 0 < hf < 5

2. The resulting asymmetries in 
the gravitational potential are given by

	 U V kfθ φ θ φ, ,( ) ( ) = 	 (12)

which defines the potential fluid Love number kf. For 
perfectly fluid bodies, hf = 1 + kf. The fluid Love numbers 
are of great importance for interior modeling because they 
can be related to the body’s internal density distribution, as 
discussed in the next section. Since the disturbing potential 
in equation (10) is a degree-2 spherical harmonic function, 
we are here concerned with the degree-2 fluid Love num-
bers, h2f and k2f.

Note that the fluid Love numbers should not be confused 
with the tidal Love numbers, which characterize the body’s 
viscoelastic response in both shape (h2t) and gravitational 
potential (k2t) due to eccentricity tides — variations in tidal 
potential associated with the body’s changing proximity to 
its parent body. Ignoring these short-timescale variations 
in shape and gravity, a synchronous satellite in hydrostatic 
equilibrium thus has a mean figure described by
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and a gravitational field whose asymmetries are described by
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where we have introduced the commonly used parameter 
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representing the relationship between the inward gravita-
tional acceleration and the outward centrifugal acceleration 
at the body’s equator. 

It is clear from equation  (14) that, for a synchronous 
satellite in hydrostatic equilibrium, the non-central part of 
the gravitational field described by equation (5), and resolved 
at the reference radius, has just two non-zero coefficients
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where we have followed the convention of expressing the 
zonal gravity coefficient according to Jl = – Cl0. For hydro-
static synchronous satellites, the ratio of the gravity coef-
ficients is thus J2 /C22 = 10/3.

Likewise, if the body’s shape is expressed in spherical 
harmonics as
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where Hlm are the degree-l and order-m spherical harmonic 
expansion coefficients representing the shape (with H00 = 
R), then the hydrostatic equilibrium figure is asymmetric in 
precisely the same way, with the coefficients
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which, again, have the characteristic ratio H20/H22 = –10/3. 
It is also common to describe the figure using the semiaxes 
(a > b > c) of an (approximately) equivalent triaxial ellipsoid, 
by evaluating equation (17) at the pole and at two points on 
the equator (at longitudes 0 and p/2), yielding
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This leads to another commonly referenced characteristic 
ratio for synchronous satellites in hydrostatic equilibrium

	

a c
b c

 = 4–
– 	

(20)

The forgoing describes the condition of hydrostatic equi-
librium in terms of both the expected equilibrium figure and 
the resulting asymmetries in the gravitational field. How-
ever, whereas the first-order approximation used to obtain 
equation (11) is adequate in most cases, and sufficient for 
a basic interpretation of the gravity data (e.g., Iess et al., 
2014), higher-order approximations become important for 
more precise modeling of fast rotating bodies like Enceladus 
(Tricarico, 2014; McKinnon, 2015), as we will discuss in 
section 2.3.

2.1.5.  Moments of inertia.  In the previous section, we 
showed that, in the case of a body in perfect hydrostatic 
equilibrium, measuring either of the two degree-2 gravity 
coefficients, J2 or C22, is sufficient to recover the fluid Love 
number k2f. This is very useful because k2f can be related 
to the body’s moment of inertia using the Radau-Darwin 
equation (e.g., Darwin, 1899; Murray and Dermott, 1999)
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where C is the polar moment of inertia (i.e., about the spin 
pole, or c-axis). 

The asymmetric nature of the tidally and rotationally de-
formed body means that its principal moments of inertia are 
not equal (see equation (3)). For a hydrostatic synchronous 
satellite, A  < B  < C; in the case of a non-synchronously 
rotating body, with no static tidal bulge, A = B < C.

It can be shown (e.g., Hubbard, 1984, p.  79) that the 
moment of inertia asymmetries are related to the degree-2 
gravity coefficients according to
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from which it follows that the mean moment of inertia is
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Having obtained the mean moment of inertia factor, we 
are finally in a position to constrain the internal density 
structure described by equations (1) and (2).

2.1.6.  Nonhydrostatic effects.  An additional complica-
tion arises from the fact that solid planetary bodies, even 
large ones like Earth, have exteriors that are cold and rigid 
enough to support some non-hydrostatic topography, even 
over long timescales. In general, the measured shape and 
gravity are therefore a reflection of a mostly hydrostatic 
body, superimposed with some relatively smaller non-
hydrostatic topography (and corresponding non-hydrostatic 
gravity). The challenge is that it is not necessarily obvious 
how to separate the hydrostatic and non-hydrostatic parts 
of these signals.

In previous work [e.g., Europa (Anderson et al., 1998)], 
it was not possible to obtain independent constraints on J2 
and C22 or to measure H20 and H22 with sufficient precision 
to confirm whether or not they conform to the hydrostatic 
expectation. Instead, the condition of hydrostatic equilibrium 
was assumed, allowing direct calculation of k2f from C22 via 
equation  (16), and yielding an estimate of the moment of 
inertia via equation (21). The Cassini mission, however, has 
enabled more precise and nearly independent measurements 
of each of these four quantities for the saturnian satellites 
Titan, Enceladus, Dione, and Rhea, and has revealed that the 
condition of hydrostatic equilibrium is generally not satis-
fied. For example, Titan’s figure exhibits considerable excess 
flattening, with –H20/H22 = 4.9 ± 0.1 (Zebker et al., 2012; 
Hemingway et al., 2013a) in spite of its nearly hydrostatic 
gravity, for which J2/C22 = 3.32 ± 0.02 (Iess et al., 2010, 
2012). Similarly, Enceladus has considerable excess flatten-

ing, with –H20/H22 = 4.2 ± 0.2 (Nimmo et al., 2011; Thomas 
et al., 2016; Tajeddine et al., 2017), while its gravity field 
is only modestly non-hydrostatic, with J2/C22 = 3.51 ± 0.05 
(Iess et al., 2014). For Dione, both the figure and gravity 
are considerably non-hydrostatic, with –H20/H22 = 5.2 ± 0.6 
and J2/C22 = 4.00 ± 0.06 (Thomas et al., 2007; Nimmo et al., 
2011; Hemingway et al., 2016). While Rhea’s shape is not 
as well determined, with –H20/H22 = 3.4 ± 1.0, its gravity 
field is substantially non-hydrostatic, with J2/C22 = 3.91 ± 
0.10 (Tortora et al., 2016).

This deviation from hydrostatic equilibrium complicates 
the interpretation, as we discuss below, but the combination 
of both shape and gravity observations allows some of the 
ambiguities to be resolved, and additionally provides infor-
mation about how such unrelaxed topography is supported 
in the relatively stiff exterior. For example, the large non-
hydrostatic topography and small non-hydrostatic gravity of 
Titan and Enceladus are suggestive of isostatic compensation 
(see section 2.3).

2.2.  Observations

2.2.1.  Gravity determination.  Cassini carried out gravity 
measurements of Enceladus during three flybys on April 28, 
2010; November 30, 2010; and May 2, 2012 (labeled as E9, 
E12, and E19). Flyby altitude and latitude were selected to 
enhance the signature of a hemispherical asymmetry of the 
gravity field, characterized mainly by the harmonic coef-
ficient J3. E9 and E19 occurred over the south polar region 
(latitude 89°S and 72°S), at closest approach altitudes of 
100 and 70 km, respectively. E12 was over the north polar 
region (latitude 62°N), at an altitude of just 48  km. The 
small closest approach distances were required by the need 
to maximize the spacecraft accelerations due to Enceladus’ 
gravity field.

The estimation of the mass and gravity field was ob-
tained solely from measurements of the spacecraft range 
rate (Doppler). Range rate is approximately equal to twice 
the line-of-sight projection of the spacecraft velocity with 
respect to a ground antenna. This observable quantity is a 
standard product of the radio tracking system and is crucial 
for the accurate navigation of the spacecraft. Although other 
radiometric data are used for orbit reconstruction (such as 
range), range rate is by far the most valuable for geodesy 
applications. The range rate of Cassini is measured at a 
ground antenna of NASA’s Deep Space Network (DSN) 
after establishing a coherent, two-way, microwave link at 
X-band (7.2–8.4  GHz). In this configuration, the ground 
antenna transmits a radio signal (a monochromatic carrier, 
possibly modulated for telecommands and ranging) gener-
ated by a highly stable frequency reference. The signal is 
then received onboard by means of a transponder, then 
coherently retransmitted back to Earth.  The frequency of 
the beat tone between the incoming and the outgoing signal 
provides the Doppler shift and the (two-way) range rate.

The Cassini X-band radio system delivers measurement 
accuracies up to 0.01 mm s–1 at 60-s integration times un-
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der favorable conditions (although 2–4 times higher noise 
is more frequently encountered). On timescales relevant 
to Cassini gravity investigations, the noise is dominated 
by path delay variations due to interplanetary plasma and 
tropospheric water vapor. During the three gravity flybys of 
Enceladus, the (two-way) range rate noise was 0.017 mm s–1 
(E9), 0.027 mm s–1 (E12), and 0.036 mm s–1 (E19) at 60 s 
integration time.

The estimation of Enceladus’s gravity field with Cassini 
poses several challenges, all traceable to three factors. First, 
the small number of flybys strongly limits the sampling 
of the gravity field and does not permit breaking the cor-
relations between some estimated parameters. Second, the 
spacecraft acceleration due to the moon’s gravity is quite 
small (surface gravity is only ~0.11 m  s–2), and so is the 
change in the spacecraft range rate measured by the ground 
antenna. Third, the gravitational interaction time of the 
spacecraft with the small moon is short.

The velocity variation induced by the monopole grav-
ity, and the zonal harmonics of degree  2 and 3 can be 
computed from elementary arguments. Neglecting factors 
on the order of unity, we simply multiply the acceleration 
due to each harmonic by the interaction time r/V (r being 
the Cassini-Enceladus distance and V the nearly constant 
relative velocity) and obtain
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Here, GM is the gravitational parameter of Enceladus and 
R is the reference radius (252.1 km). Note that, for close fly-
bys (r–R = R), the velocity variation scales with the product 
rR2, where r is the mean density. Using the values reported 
by Iess et al. (2014), the velocity changes due to GM, J2, 
and J3 are, respectively, about 3–4 m s–1, 1.1–1.4 cm s–1, and 
0.2–0.3 mm s–1. Although all these values are well above 
the noise threshold of the Cassini radio system, the various 
contributions are not fully separable with only three flybys. 

Gravity and orbits of the spacecraft and Enceladus were 
recovered by fitting the range rate data using orbit determi-
nation software developed at JPL for deep space navigation. 
These tools (ODP and the recently developed MONTE) gen-
erate computed observables using a fully relativistic model 
of the spacecraft dynamics and radio signal propagation. 
The residuals (observed range rate minus computed range 
rate) are minimized through an iterative process where a set 
of free parameters is adjusted by linearizing the observation 
equations. The output of the process is a set of estimated 
parameters and their covariances. The estimated parameters 
included the full satellite degree-2 harmonic coefficients, J3, 
the position and velocity of Cassini at each flyby, and correc-
tions to the mass and the orbital elements of Enceladus. In 

the nominal solution, the tesseral and sectorial components 
of the degree-3 field were assumed to be zero. This set of 
parameters was the minimum set able to fit the data. As a test 
of the stability of the model, an alternate solution, which also 
estimated the remaining degree-3 terms, was obtained. The 
result is statistically identical to the nominal result, although 
the uncertainties increase. All the additional degree-3 terms 
are compatible with zero within 2s or less, and thereby 
add no new information (Iess et al., 2014, section S2.1). 
The non-gravitational accelerations due to the anisotropic 
thermal emission from Cassini’s radioisotope thermoelectric 
generators and the solar radiation pressure were accounted 
for using previous estimates obtained during the saturnian 
tour. The associated uncertainties were considered in the 
construction of the covariance matrix. 

A good orbital fit would not be possible without also 
including the small but non-negligible aerodynamic drag 
experienced by Cassini when it flew through the plumes 
in the southern polar flybys E9 and E19. The dynamical 
effect was modeled as a nearly impulsive, vectorial ac-
celeration at closest approach, to be estimated together 
with the other parameters. An equivalent method relies on 
models of the neutral particle density and estimates the 
aerodynamic coefficient of the spacecraft. Both methods 
lead to statistically identical solutions for the gravity field. 
The estimated, aerodynamic DV is almost parallel to the 
spacecraft velocity V (as expected for a drag force), with a 
magnitude of 0.25 mm s–1 for E9 and 0.26 mm s–1 for E19. 
The DV experienced by Cassini is comparable to the effect 
of the J3 harmonic.

As expected, the gravity field is dominated by the J2 
and C22 harmonics, associated with the rotational and tidal 
deformation of Enceladus (Table 1). The estimate of J2 and 
C22 is quite precise (about 1%, 1s). C2,1, C2,–1, and C2,–2 are 
consistent with a null value at the 2s level. C2,2 is about one 
order of magnitude larger than J3, which is estimated to a 
relative accuracy of about 20%. The positive sign of J3 im-
plies a negative mass anomaly at the south pole (consistent 
with the observed topography), but its small value indicates 
the presence of a compensating positive mass anomaly at 
depth (see section 2.3). 

2.2.2.  Shape determination.  The shape of Enceladus has 
been determined based on analysis of limb profiles collected 
over the course of the Cassini mission (Thomas et al., 2007; 

TABLE 1.  Gravity model (Iess et al., 2014) (unnormalized, 
dimensionless potential coefficients, for Rref = 252.1 km).

	 Parameter	 Value ±1s

	 GM	 7.210443 ± 0.00003 km3 s–2

	 J2 = – C2,0	 5526.1 ± 35.5 × 10–6

	 C2,1	 9.4 ± 11.8 × 10–6

	 C2,–1	 40.5 ± 22.8 × 10–6

	 C2,2	 1575.7 ± 15.9 × 10–6

	 C2,–2	 23.0 ± 7.5 × 10–6

	 J3 = – C3,0	 –118.2 ± 23.5 × 10–6

	 J2/C2,2	 3.51 ± 0.05
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Thomas, 2010; Nimmo et al., 2011; Tajeddine et al., 2017). 
The best fitting triaxial ellipsoidal figure exhibits substan-
tial polar flattening, with a–c  ≈ 8.5  km and a significant 
departure from hydrostatic equilibrium, with (a–c)/(b–c) ≈ 
2.8 (recall that the hydrostatic ratio is 4). Similarly, in terms 
of spherical harmonic coefficients, the ratio of the degree-2 
zonal to sectorial terms is ~4.2, much higher than the ~3.3 
expected if Enceladus were in hydrostatic equilibrium 
(Table 2). The limb profiles provide sufficient spatial cov-
erage to constrain global spherical harmonic models up to 
degree and order 8 (Nimmo et al., 2011); the recent addition 
of stereogrammetric measurements has extended the latest 
topography models to degree and order 16 (Tajeddine et al., 
2017). One of the most significant features of the shape is 
the topographic depression associated with the SPT, having 
an elevation that is ~1.1 km lower than at the north pole, 
an effect that is expressed mainly in the H30 term (Table 2).

2.3.  Modeling and Interpretation

2.3.1.  Basic interpretation.  Since the gravity field of 
Enceladus was first measured (Iess et al., 2014), its interpre-
tation has been an active area of research (Iess et al., 2014; 
McKinnon, 2015; Čadek et al., 2016, 2017; van Hoolst et al., 
2016; Beuthe et al., 2016; Hemingway and Mittal, 2017). In 
part because of Enceladus’ small size and rapid rotation rate, 
interpretation of the data is unusually sensitive to modeling 
details, as we discuss below. Nevertheless, there are a few 
basic observations that are uncontroversial.

The first is that while the shape is substantially non-
hydrostatic, with H20/H22 = – 4.20 ± 0.22 (1s), the gravity 
field is only modestly so, with J2/C22 = 3.51 ± 0.05 (1s). 
This situation is immediately suggestive of compensation. 
Without compensation, the large non-hydrostatic topography 
should give rise to a correspondingly large non-hydrostatic 
gravity signal. Likewise, the observed J3 gravity anomaly, 
(–118 ± 23) × 10–6, is substantially smaller than would be 
expected if the ~1-km north-south polar elevation difference 
were completely uncompensated (≈–375 × 10–6).

A compensation mechanism is therefore required. Al-
though there are several possibilities, including systematic 
lateral variations in density (i.e., Pratt isostasy) or non-
hydrostatic topography on the surface of the rocky core (see 
section 2.3.5), the most straightforward mechanism, which 

naturally yields a small non-hydrostatic gravity signal in 
spite of the large non-hydrostatic topography, is Airy-type 
isostatic compensation. That is, Enceladus’ long wavelength 
topography appears to be supported, at least in part, by the 
displacement of a relatively low viscosity, higher density 
material beneath the crust — e.g., a subsurface liquid ocean. 

2.3.2.  Admittance analysis.  The presence of non-
hydrostatic degree-2 gravity and topography prevents direct 
calculation of the moment of inertia via equations (16) and 
(21). Instead, it is necessary to first separate the observed 
degree-2 gravity and topography signals into their hydrostatic 
and non-hydrostatic parts (Iess et al., 2014). Assuming these 
components can be separated linearly (a reasonable assump-
tion as long as the non-hydrostatic parts are small compared 
to the hydrostatic parts), we can write
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where the superscripts refer to the observations (obs), the 
hydrostatic expectation (hyd) given by equations (16) and 
(18), and the non-hydrostatic components (nh). For a given 
assumed moment of inertia, the only unknowns in equa-
tion (25) are the non-hydrostatic components. The relation-
ship between these non-hydrostatic gravity and topography 
signals can be quantified by the ratios
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This is effectively a component-wise version of the spec-
tral admittance (e.g., Wieczorek, 2015), a quantity related to 
the degree and depth of isostatic compensation:  Greater and/
or shallower compensation results in a more muted gravity 
signal and thus a smaller admittance. The advantage of this 
approach is that, provided the ice shell’s mechanical proper-
ties are not significantly variable laterally, we should expect 
that Z20 = Z22. Hence, we obtain self-consistent results when 
we find a moment of inertia that, via equations (21), (16), 
(18), (25), and (26), yields Z20 = Z22.

It is worth emphasizing, however, that, for a body like 
Enceladus, the expectation that Z20 = Z22 is an assumption 
that has not been explicitly tested in the literature to date. Fu-
ture work to better justify this assumption, or to investigate 
the effect of relaxing it to some degree, may be valuable.

Considering a wide range of possible mean moments 
of inertia, Iess et al. (2014) produced the equivalent of 
Fig. 2a. This result follows from the first-order equilibrium 
figure theory described by equation (11) — an approxima-
tion that becomes increasingly poor for fast-rotating bodies 
like Enceladus (Tricarico, 2014). To account for this effect, 
McKinnon (2015) repeated the analysis of Iess et al. (2014) 
using a fourth-order theory of figures approach (Tricarico, 
2014), yielding instead the equivalent of Fig. 2b. Whereas 

TABLE 2.  Shape model (Nimmo et al., 2011) (unnormalized).

	 Parameter	 Value ±1s

	 R	 252.1 km
	 H2,0	 –3846 ± 179 m
	 H2,1	 0 ± 52 m
	 H2,–1	 – 65 ± 52 m
	 H2,2	 917 ± 19 m
	 H2,–2	 –39 ± 19 m
	 H3,0	 384 ± 5 m
	 –H2,0/H2,2	 4.20 ± 0.22
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the fi rst-order results indicate a preferred admittance of Z2 ≈ 
11.8 ± 1.6 mGal km–1 and a mean moment of inertia factor 
of ~0.333 ± 0.002, the fourth-order results suggest instead 
Z2 ≈ 15.7 ± 2.0 mGal km–1 and ~0.331 ± 0.002. While the 
difference may appear subtle, the implications for compen-
sation depth (and hence ice shell thickness) are signifi cant.

In addition to the degree-2 signals, the zonal terms of 
the degree-3 gravity and topography are available and can 
be used to obtain the zonal part of the degree-3 admittance, 
Z30 ≈ 14.0 ± 2.8 mGal km–1. The degree-3 observations 
provide an independent admittance estimate that also has the 
advantage of not being complicated by tidal and rotational 
deformation (the theoretical hydrostatic equilibrium fi gure 
has no degree-3 components), and is therefore independent 
of moment of inertia.

To put these admittance values in context, assuming a 
density of rc = 925 kg m–3 for the icy crust, the degree-2 and 
-3 admittances expected in the case of zero compensation are 
Z2 ≈ 47 mGal km–1 and Z3 ≈ 44 mGal km–1. The fact that the 
observed admittances are much smaller is another indication 
that the topography is signifi cantly compensated. Although 
the degree-2 admittance values depend on the assumed mean 
moment of inertia, even without requiring that Z20 = Z22, 
the small values of both Z20 and Z22 suggest compensation 
independently. Although Z22 becomes compatible with 
uncompensated topography for moments of inertia below 
~0.32, this seems unlikely, as it would require Enceladus 
to be one of the most strongly differentiated solid bodies in 
the solar system. This observation also provides a clue about 
the spatial extent of the subsurface liquid layer (assuming 
Airy type compensation):  Whereas a south polar regional 
sea could account for the smallness of the zonal admittance 
terms (Z20 and Z30), the small value of Z22 requires a more 
extensive, perhaps global, subsurface liquid layer.

2.3.3 .  Compensation model.  Further interpretation of 
the admittance values requires a compensation model. While 
most authors to date have favored Airy isostasy to explain 
the compensation of Enceladus’ long wavelength topogra-
phy (Iess et al., 2014; McKinnon, 2015; Čadek et al., 2016; 
Beuthe et al., 2016; Hemingway and Mittal, 2017), there are 
multiple ways to conceive of Airy compensation, leading 
to subtle but consequential differences between the models 
and their implications. Moreover, the introduction of elastic 
stresses to the models widens the parameter space consider-
ably, and can have a signifi cant effect on the results — an 
issue we discuss further below.

The non-hydrostatic topography gives rise to non-hydro-
static gravitational acceleration according to (Jeffreys, 1976; 
Burša and Peč, 1993)
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where R is the body’s mean radius, G is the gravitational 
constant, Hilm describes the degree-l and order-m non-hy-
drostatic topography at the top of the ith layer, whose mean 
outer radius is Ri, and where Dri is the density contrast 
between the ith layer and the layer above it.

Assuming Airy compensation, and ignoring the role of 
elastic support for the moment, the relief at the base of the 
ice shell mirrors the non-hydrostatic surface relief with the 
amplitude scaled by rc/Dr, where rc is the density of the 
crust (or ice shell) and Dr is the density contrast between 
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Fi g. 2.  Comparison of degree-2 zonal (Z20, solid line) and 
sectorial (Z22, dashed line) admittances across a range of 
possible mean moments of inertia. Shaded bands indicate 
1s uncertainties propagated from both the shape and gravity 
models. The point of intersection represents the admittance 
and moment of inertia combination that  yields self-consistent 
results. (a) Replication of the Iess et al. (2014) results, 
following from fi rst-order equilibrium  fi gure theory (except 
using gravity coeffi cients from Table 1). (b) Replication of 
McKinnon (2015) results, employing fourth-order methods of 
Tricarico (2014). Unlike in Iess et al. (2014) and McKinnon 
(2015), admittances are here given in the more commonly 
used units of mGal km–1 (where 1 mGal = 10–5 m s–2), ob-
tained by converting the dimensionless gravitational potential 
coeffi cients in equation (26) to acceleration by multiplying 
them by (l+1)GM/R2.
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the ice shell and the underlying ocean. In this case, the 
non-hydrostatic topography at the top (t) and bottom (b) of 
the crust are related by
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Here, the dimensionless factor g is a placeholder allowing 
for various conceptions of Airy isostasy and different types 
of elastic support, as discussed below.

In general, the model admittance (gravity/topography 
ratio) can thus be written
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where Rt and Rb are the radii corresponding to the top and 
bottom of the ice shell, respectively (the mean shell thick-
ness being d = Rt–Rb).

Equations (27) and (29) implicitly treat the non-hydrostat-
ic topography as a surface density anomaly — an approxima-
tion that is good when the topography is sufficiently small. In 
the present case, however, the small density contrast between 
the ice shell and the ocean leads to substantial relief at the 
ice/ocean interface. Taking this finite-amplitude into account 
(e.g., Martinec, 1994; Wieczorek and Phillips, 1998), one 
obtains a slightly smaller admittance. Although we neglect 
this effect in our discussion here, within the context of any 
particular compensation model, the effect can be significant, 
and so some authors do take it into account (e.g., Čadek et 
al., 2016; Hemingway and Mittal, 2017). 

In the limit of zero elastic support, and when isostasy 
is defined as requiring equal masses in columns of equal 
solid angle, then g = (Rt/Rb)2 (e.g., Wieczorek, 2015); the 
requirement of equal pressures at equal depths instead leads 
to g  = (gt/gb), where gt and gb are the mean gravitational 
acceleration at the top and bottom of the ice shell, respec-
tively (Hemingway and Matsuyama, 2017); when the total 
weight of the surface topography is required to equal the 
buoyancy force of the basal relief, then g = (gt/gb)(Rt/Rb)2 
(e.g., Čadek et al., 2016). Unfortunately, these different 
definitions of isostasy lead to significantly different estimates 
of the compensation depth.

Assuming a crustal density of rc = 925 kg m–3, the ob-
served degree-3 admittance suggests a compensation depth 
of between 18 km and 30 km, depending on how one de-
fines isostasy [the “equal masses” model leads to the largest 
compensation depth estimate; the “equal pressures” model 
leads to the smallest (Hemingway and Matsuyama, 2017)], 
in agreement with the result following from the degree-2 
admittance obtained using first-order equilibrium figure 
theory (Iess et al., 2014). The degree-2 admittance obtained 
using fourth-order equilibrium figure theory (Tricarico, 
2014; McKinnon, 2015) instead suggests a compensation 
depth of between 24 km and 47 km, again, depending on 
how isostasy is defined. Accounting for uncertainties in the 
observed shape and gravity, the range of possible compensa-

tion depths expands even further:  from ~14 km at the low 
end of the estimated degree-3 admittance to ~53 km at the 
high end of the estimated degree-2 admittance.

When elastic support is included, g decreases in the case 
of surface loading (e.g., due to impacts or sedimentation/
erosion at the surface) and increases in the case of basal 
loading (e.g., freezing/melting/relaxation at the base of the 
crust), and can have a significant effect on the resulting com-
pensation depth estimate (Hemingway and Mittal, 2017). For 
instance, adding even an effective 200-m elastic layer can 
decrease the estimated compensation depth by more than a 
factor of 2 (Čadek et al., 2016), assuming the shell thickness 
variations are generated at the surface; the compensation 
depth estimate increases if the shell thickness variations 
are instead generated at the base of the shell (Beuthe et al., 
2016; Hemingway and Mittal, 2017). 

Further details of elastic/viscoelastic support models are 
beyond the scope of this chapter, but it should be noted 
that this remains an active area of research (Čadek et al., 
2016; Soucek et al., 2016; Hemingway and Mittal, 2017). 
In particular, it is not yet clear how elastic support of the 
long-wavelength topography is affected by factors such as 
lateral variations in the shell’s elastic properties (Beuthe, 
2008; Čadek et al., 2016, 2017), or the way bending and 
membrane stresses are transmitted across the SPT given 
the presence of the major fracture systems (i.e., the Tiger 
Stripes) in that region (e.g., Soucek et al., 2016). 

Although the range of possible mean ice shell thicknesses 
(i.e., mean compensation depths) can be narrowed by argu-
ing for one or another compensation model, researchers have 
yet to converge on the best approach, making it difficult to 
make definitive statements about the ice shell thickness. 
However, assuming some version of Airy compensation, 
a few things can be stated with confidence. First, the thin-
nest part of the ice shell must be located beneath the large 
topographic depression at the south pole. Since the shell 
thickness is necessarily greater than zero there, this pro-
vides an effective lower bound on the mean shell thickness. 
Depending on the definition of isostasy, and the assumed 
ice shell and ocean densities, one finds that the mean shell 
thickness must be at least ~18 km in order to ensure non-
zero shell thickness at the south pole. An upper bound on the 
shell thickness is harder to establish. However, as long as the 
degree-3 observations are taken into account, the mean shell 
thickness is unlikely to exceed ~44 km. Shell thicknesses 
greater than 44 km would lead to degree-3 admittances more 
than 2s larger than the observed value, even when using 
the isostasy model that produces the smallest admittances 
[i.e., the “equal masses” model, with g = (Rt/Rb)2]. Again, 
however, the possibility of substantial elastic support of 
basal topography can allow for larger mean shell thicknesses.

2.3.4.  Internal structure.  The simplest approach to mod-
eling the internal density structure is to start by assuming a 
two-layer body. If the density of the outer H2O layer (ocean 
plus ice shell) is prescribed, then with the known bulk den-
sity (1609 kg m–3) and the moment of inertia obtained from 
the admittance analysis, we can use equations (1) and (2) to 
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solve for the core radius and density (Fig. 3). A mean core 
radius of ~192 km leaves ~60 km for the mean thickness of 
the H2O layer. If the mean compensation depth (i.e., ice shell 
thickness) is ~30 km, this leaves a mean ocean thickness of 
~30 km, neglecting the effect of the small difference in den-
sities between the ice shell and the ocean (Iess et al., 2014; 
McKinnon, 2015). More sophisticated three-layer models 
have also been constructed (Čadek et al., 2016; Hemingway 
and Mittal, 2017), yielding broadly similar results (Table 3). 

A few basic conclusions emerge immediately. First, the 
low density of the (presumably silicate) core suggests hydro-
thermal alteration (e.g., serpentinization) and/or substantial 
porosity, which may be easy to maintain given the modest 
internal pressures (Fig. 4). In particular, an unconsolidated 
rubble pile core, with water-fi lled pores, is possible (Roberts, 
2015). The combined thickness of the H2O layers is reason-
ably well constrained, but the models permit some tradeoff 
between the thicknesses of the ice shell and the ocean (e.g., 
Hemingway and Mittal, 2017). Although these tradeoffs 
have little effect on the density and therefore the internal 
pressure and gravity profi les (Fig. 4), they do make it dif-
fi cult to determine the shell thickness with precision. This is 
regrettable since the thickness of the ice shell has a number 
of important implications. We discuss the ice shell’s possible 
structure, dynamics, and related implications in section 4.

2.3.5.  Additional considera tions.  In the models dis-
cussed so far, the core shape has been assumed to conform 
to an equipotential, as expected if the core shape was es-
tablished when the interior was warm. The small internal 
gravity and pressure, however, means that the surface of the 
core could, in principle, support considerable non-hydrostatic 
topography over long timescales. Indeed, an irregular core 
shape had previously been proposed to account for the 

non-hydrostatic shape of Enceladus’ surface (Thomas et al., 
2007; McKinnon, 2013) and to explain the rotation state of 
the similarly sized Mimas (Tajeddine et al., 2014). How-
ever, while the presence of non-hydrostatic core topography 
would contribute to the observed gravity, there is no reason 
to expect it to do so in precisely such a way as to offset the 
gravity anomalies associated with the surface topography. 
That is, there is no reason to expect the non-hydrostatic core 
topography to effectively mirror the non-hydrostatic surface 
topography, as would be required for it to be substantially 
responsible for the compensating effect observed in the 
gravity data. In fact, it is just as likely, if not more so, that 
non-hydrostatic core topography would have the opposite 
effect, as would be expected in the case of an overly oblate 
or tidally elongated core. While the core shape may not be 
precisely hydrostatic, the hydrostatic assumption may be 
justifi ed on the grounds that it is the most parsimonious. 
Although it has not been done in the literature to date, some 
unknown non-hydrostatic core topography could be added 
as a free parameter, and would increase uncertainties in the 
other estimated parameters.

Whereas all the models discussed so far assume some 
version of Airy-type isostasy, in which the surface topogra-
phy is supported in part by lateral variations in the ice shell’s 
thickness, it should be noted that the topography could also 
be supported in part by lateral variations in density [i.e., 
Pratt-type isostasy (e.g., Besserer et al., 2013; Tajeddine 
et al., 2017)]. This mechanism is unlikely to be primarily 
responsible for the observed compensation, however, be-
cause it would require parts of the heavily cratered plains 
to exhibit a higher crustal density, which is the opposite of 
what one would expect (e.g., McKinnon, 2015; Hemingway 
and Mittal, 2017) and because it would require the density 
variations to extend through an unrealistically large depth 
of ~40 km (Hemingway and Mittal, 2017). Nevertheless, the 
potential compensating effect of lateral variations in density 
cannot be ruled out entirely.3600
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TABLE 3.  Comparison of published interior models.

Model	 Core	 Ocean	 Ice Shell	 Notes

Iess et al. 
(2014)

~190 km  
(~2400 kg m–3)

10–30 km  
(1000 kg m–3*)

30–40 km  
(920 kg m–3*)

Based on gravity and topography:  
Hydrostatic terms from first-order equilibrium 
figure theory; elastic support deemed 
insignificant; both regional and global oceans 
discussed, but left as an open question.

McKinnon 
(2015)

190–195 km  
(~2450 kg m–3)

~10 km  
(1007 kg m–3*)

~50 km  
(925 kg m–3*)

Based on gravity and topography:  
Hydrostatic terms from fourth-order 
equilibrium figure theory (Tricarico, 2014); 
elastic support deemed insignificant; ice shell 
thickness determination is based on degree-2 
data only (degree-3 data deemed to have only 
regional significance).

Thomas  
et al. (2016)

~200 km  
(~2300 kg m–3)

26–31 km  
(1000 kg m–3*)

21–26 km  
(~850 kg m–3)

Based on physical libration amplitude:  Three-
layer model with layer interfaces assumed 
to be hydrostatic and defined by first-order 
equilibrium figure theory; ice shell thickness 
constrained by libration amplitude. Core and 
ice shell densities adjusted to fit the moment of 
inertia reported by Iess et al. [2014]. 

Čadek et al. 
(2016)

180 –185 km  
(~2450 kg m–3)

~50 km  
(~1030 kg m–3)

18–22 km  
(925 kg m–3*)

Based on gravity, topography, and librations:  
Elastic support (assuming top loading) 
introduced in order to bring gravity-based 
shell thickness estimate into agreement with 
Thomas et al. (2016); Airy compensation 
model modified to account for radial variation 
in gravity; finite-amplitude correction 
included (Martinec, 1994).

Van Hoolst  
et al. (2016)

170 –205 km  
(2158–2829 kg m–3)

21–67 km  
(950–1100 kg m–3)

14–26 km  
(900–1000 kg m–3)

Based on physical libration amplitude:  
Similar to Thomas et al. (2016) but 
additionally accounting for uncertainties 
on libration amplitude arising from rigidity 
and viscoelastic behavior of the ice shell, a 
wider range of ice and ocean densities, and 
the possibility of core topography; relaxes 
assumption of Airy compensation.

Beuthe et al. 
(2016)

186–196 km  
(2350–2480 kg m–3)

34–42 km  
(1020 kg m–3*)

19–27 km  
(925 kg m–3*)

Based on gravity and topography:  Three-
layer model with hydrostatic terms from 
second-order equilibrium figure theory 
(Zharkov, 2004); isostatic compensation 
achieved by minimizing deviatoric stresses 
(e.g., Dahlen, 1982).

Hemingway 
and Mittal 
(2017)

188–205 km  
(2200–2450 kg m–3)

12–36 km  
(1000–1100 kg m–3)

22–41 km  
(850–950 kg m–3)

Based on gravity and topography:  Three-
layer model with equilibrium figures 
determined numerically (Tricarico, 2014); 
Airy compensation model modified to ensure 
equal pressures at depth (Hemingway and 
Matsuyama, 2017); using newer shape 
model (Tajeddine et al., 2017); finite-
amplitude correction included (Wieczorek and 
Phillips, 1998).

*Values that were prescribed rather than derived.

Thicknesses refer to mean layer thickness; lateral thickness variations are required by all models.
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3.  IMPLICATIONS FROM LIBRAT IONS

In the previous section, we saw how tidal and rotational 
forces deform synchronous satellites like Enceladus into 
approximately triaxial ellipsoidal fi gures. We discussed how 
the resulting asymmetries in the mass distribution lead to 
differences among the principal moments of inertia, how 
these moments of inertia are related to observable asym-
metries in the gravitational fi eld, and how the moments of 
inertia are related to the satellite’s internal structure. Here 
we look at how a satellite’s rotational dynamics depend on 
the principal moments of inertia, focusing specifi cally on 
how the amplitude of forced physical librations can help to 
constrain the interior structure.

Most satellites in the solar system are locked in a 1:1 
spin:orbit resonance, where the satellite’s mean rotation rate 
is equal to its orbital mean motion. In this confi guration, 
and assuming a circular orbit, the long axis of the satellite 
(i.e., its static tidal bulge) always points toward the parent 
body (the central planet). The eccentricity of the satellite’s 
orbit, however, causes it to move faster at pericenter and 
slower at apocenter, even as the rotation rate remains (nearly) 
constant, leading to misalignments between the satellite’s 
long axis and the line connecting the two bodies. To a fi rst 
approximation, the long axis of the satellite points at the 
empty focus of the satellite’s elliptical orbit (Murray and 
Dermott, 1999, p. 44). In a frame fi xed on the planet, the 
satellite thus appears to rock back and forth about its spin 
axis as it orbits the planet — these apparent oscillations, 
called “optical librations,” explain in part why more than 
50% of the nearside of the Moon is visible from Earth. 

Because of the periodic misalignments between the satel-
lite’s long axis and the satellite-planet line, the planet exerts 
gravitational torques on the satellite’s static tidal bulge, 
creating additional oscillations called “physical longitudinal 
librations.” Whereas the amplitude of the optical libration 
depends only on the orbital eccentricity, the physical libra-
tion amplitude additionally depends on the satellite’s mo-
ments of inertia, thus making its measurement a valuable 
tool for constraining the internal structure [e.g., for the Moon 
(Dickey et al., 1994), Mercury (Margot et al., 2007), Phobos 
(Willner et al., 2010; Nadezhdina and Zubarev, 2014), Janus 
and Epimetheus (Tiscareno et al., 2009), Mimas (Tajeddine 
et al., 2014), and Enceladus (Thomas et al., 2016)].

3.1.  Theory

The rotation of a satellite orbiting a central planet with 
mass m is described by the three Euler equations of motion 
(Danby, 1988; Murray and Dermott, 1999)

 

A B C Gm C B YZ r

B C A G
x y z

y z x





ω ω ω

ω ω ω

       

     

  =  

  = 

( ) ( )
( )

3

3

5

mm A C ZX r

C A B Gm B A XY rz x y

  

       

 

  =  

( )
( ) ( )

5

53ω ω ω

 – 

 – 

 – 

 – 

 – 

 – 

 – 

 – 

 –  

(30)

where A, B, and C are the satellite’s principal moments of 
inertia; wx, wy, and wz are the projections of the spin vec-
tor onto the satellite’s principal axes, x, y, and z; X, Y, and 
Z represent the coordinates of the planet in the satellite’s 
principal frame; and r is the distance between the satellite 
and the planet. 

When the satellite’s obliquity is negligible (i.e., when 
its spin pole is normal to its orbital plane), then wx = wy = 
0, and the problem is reduced to two dimensions (Fig. 5). 
The small obliquity expected for Enceladus (Chen and 
Nimmo, 2011; Baland et al., 2016) makes this a reasonable 
approximation for purposes of our discussion.

If we defi ne y as the angle between the satellite’s long 
axis and the line connecting the two bodies, then we have 
X/r = cos y and Y/r = sin y, which reduces the third line 
in equation (30) to
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where we now use q
..
 to represent the variation in the satellite’s 

angular velocity. Here, q is the orientation of the satellite’s 
long axis with respect to a fi xed inertial reference frame 
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Fig. 5.   The geometry of a satellite subject to librations 
illustrated (a) in a frame fi xed on the planet; and (b) in a 
frame fi xed on the satellite and oriented with the x-axis 
pointing toward the empty focus of the satellite’s orbit. In 
(a), f represents the true anomaly for the satellite, while q 
represents the orientation of its long axis with respect to a 
fi xed inertial frame. In (b), f represents the angle between 
the satellite-planet line and the line connecting the satellite 
with the empty focus of its orbit [this is the optical libration 
angle, not shown in (a)]; g is the physical libration. After 
Tiscareno et al. (2009).
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(where q  =0 corresponds to pericenter). This variation in 
angular velocity goes as (B–A)/C because the longitudinal 
torques the planet exerts on the satellite are proportional to 
the satellite’s moment of inertia difference, B–A, and because 
the polar moment of inertia, C, represents the resistance to 
those torques.

We also define f to be the angle between the line connect-
ing the two bodies and the line connecting the satellite with 
the empty focus of its orbit (Fig. 5b) — this is the optical 
libration angle. In the absence of longitudinal torques, the 
satellite’s long axis would remain pointed at the empty focus, 
so that y would be equal to f. In this case, the satellite’s 
orientation would be given simply by the mean anomaly 
q(t) = nt. The presence of longitudinal torques, however, 
causes small additional variations in the satellite’s orienta-
tion so that q(t) = nt + g(t), where g is the forced physical 
libration. Assuming for now that n is constant (although a 
discussion on perturbations from other satellites is provided 
below), we have q

..
 = g

..
. 

The satellite’s true anomaly (Fig. 5a), expanded as a Fou-
rier series and limited to first order in eccentricity (Murray 
and Dermott, 1999), is given by

	 f nt e nt e = + +2 0 2sin ( )	 (32)

It is clear from Fig. 5a that f–q = y, so that y = 2e sin nt–
g. Using the small angle approximation for y, equation (31) 
can be rewritten
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With the approximation that Gm ≈ r3n2, and given that 
q
..
 = g

..
, this yields

	
γ ω γω  = 2 0

2
0
2e ntsi  – 	 (34)

where w0 is the natural frequency, defined as
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Finally, substituting g = g0 sin nt into equation (34), the 
solution becomes
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The amplitude of the forced physical libration thus 
depends on the natural frequency w0, which is a function 
of the moments of inertia via equation (35), and hence the 
satellite’s interior structure. Note that the phase of the physi-
cal libration is a function of n and w0:  If n < w0, then the 
libration would be in phase with the torque, while if n > 
w0, the libration and the torque would be 180° out of phase 
(Murray and Dermott, 1999, p. 216), which is the case for 
Enceladus and the case illustrated in Fig. 5b. 

So far, we have considered only the two-body problem, 
where the satellite’s motion is not perturbed by other satel-
lites. The more general expression of the physical libration 
is (Rambaux et al., 2010)
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The first term in equation (37) represents the free libration 
of the satellite, usually induced by episodic events such as 
impacts. The free libration oscillates at ω ω λd = 0

2 2 – , also 
called the free libration frequency, very close to the satellite’s 
natural frequency w0 [l is a damping constant (Rambaux et 
al., 2010)]. The amplitude Ad and the phase ad are integration 
constants that are functions of the initial conditions related 
to the perturbing event. Since dissipation in the satellite 
will damp the free librations on a timescale of tens of years 
(Rambaux et al., 2010; Noyelles et al., 2011), we can assume 
that the observed librations of Enceladus are forced.

The second term in equation (37) represents the forced 
libration, including gravitational perturbations from other 
satellites. Such perturbations introduce additional librations, 
where Hi, wi, and ai are the magnitude, frequency, and phase 
of the ith perturbation, respectively. Equation (36) is a special 
case of equation (37), corresponding to the orbital frequency, 
n, and an amplitude of Hi = 2e. Using the JPL Horizons 
Ephemeris (http://ssd.jpl.nasa.gov/horizons.cgi), Rambaux 
et al. (2010) identified three major libration frequencies 
for Enceladus, with periods of 1.37 days, 3.89 years, and 
11.05 years, and respective amplitudes of –0.028°, 0.189°, 
and 0.259° (based on a solid-body interior model). The 
first signal, at the orbital period of Enceladus, is due to the 
mean anomaly perturbation. The comparison to the semi-
analytical model of Enceladus’ orbit (Vienne and Duriez, 
1995) suggests that the remaining two signals are due to the 
Enceladus-Dione resonance:  The first is related to Dione’s 
precession of pericenter, and the second is related to the 
orbital libration argument of the Dione-Enceladus resonance.

Equation  (37) indicates that the forced libration ampli-
tudes, at all frequencies, depend on the natural frequency 
w0, and thus on the satellite’s internal structure. However, 
because the amplitude depends on 1–(wi/w0)2, the effect is 
only significant for the libration at the orbital frequency, for 
which (wi/w0)2 is non-negligible (Table 4). For this reason, 
in attempting to constrain the interior structure, we focus 
only on the libration at the satellite’s orbital period.

3.2.  Measuring Physical Librations

With the exceptions of Mercury (Margot et al., 2007) and 
the Moon (Dickey et al., 1994), all measurements of physical 
libration amplitudes have been carried out by photogramme-
try using spacecraft imagery (Tiscareno et al., 2009; Willner 
et al., 2010; Nadezhdina and Zubarev, 2014; Tajeddine et al., 
2014; Thomas et al., 2016). This technique uses images to 
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build three-dimensional coordinates of recognizable surface 
features, called control points, by observing them from vari-
ous angles. With sufficient coverage, a global control point 
network can be built and used for mapping and for generating 
digital terrain models (DTMs). Like any observation-based 
technique, control points are subject to reconstruction errors. 
While some are random, others are systematic, such as errors 
in spacecraft position, camera pointing, and the body’s rota-
tion model (including the effect of any physical libration). 

During its time in the Saturn system, the Cassini space-
craft collected tens of thousands of images of Enceladus. 
Observations were made from various phase angles and 
distances, in order to study the plumes, surface geology, and 
orbital and rotational dynamics. The amplitude of the physical 
libration of Enceladus is on the order of hundreds of meters 
of surface displacement at the equator. The spacecraft must 
be close enough to obtain images of sufficiently high reso-
lution to permit libration detection. However, the spacecraft 
must not be too close, because when only a small part of the 
surface is in view, all the predicted positions of control points 
projected onto that image have nearly the same systematic 
errors, preventing the fitting software from distinguishing 
between libration-related offsets and camera-pointing er-
rors. Provided that a sufficient latitudinal range is in view, 
however, the ambiguity is removed because, unlike camera 
pointing errors, the libration-related offsets vary with latitude. 

To measure the physical librations of Enceladus, Thomas 
et al. (2016) used a network of 488 control points (mostly 
craters) across the surface, tracking them through a series 
of 340 Cassini Imaging Science Subsystem (ISS) images, 
totaling 5873 measurements. Starting from the approximately 
known positions of each control point in the satellite’s refer-
ence frame, the control points were first converted to J2000, 
a fixed frame based on the initial conditions of Earth’s rota-
tional state on January 1, 2000, at 12:00 Terrestrial Time. This 
requires knowledge of the satellite’s rotational parameters 
(i.e., orientation of the spin axis, rotation rate, librations, 
etc.), accounting for the three major libration frequencies 
(Table 4). As discussed above, the amplitudes of the long-
period librations are well known since their dependence on 
Enceladus’ interior is negligible. The amplitude of the signal 
at the orbital period of Enceladus (including the physical 
libration), however, is a parameter that needs to be fitted. 
Next, the coordinates are converted to the reference frame 
of the Cassini ISS Narrow Angle Camera (NAC), requiring 
instantaneous information of the spacecraft’s position and 

the camera’s pointing angle. This information is available 
at NASA’s Navigation and Ancillary Information Facility 
(NAIF) SPICE website (http://naif.jpl.nasa.gov/naif). The 
twist angle (orientation about the axis along the line of sight) 
of the Cassini NAC is well determined, and the position of 
the spacecraft is known to within 1–10 km. The camera’s 
right ascension and declination, however, are not well deter-
mined and must be fitted. 

Next, the three-dimensional coordinates of the control 
points were adjusted in order to minimize the c2 residuals 
between the observed and predicted positions of the control 
points projected onto the camera image plane. To avoid 
degeneracies associated with going from three dimensions 
to two, each control point must have been observed from 
at least two sufficiently different viewing geometries. The 
more a control point is observed in different images, the 
lower the uncertainties in its position. Similarly, increasing 
the number of control points in an image reduces the uncer-
tainties on camera-pointing angle. Finally, the reconstructed 
control point network still depends on the assumed rotational 
model for the satellite. When the model does not describe 
the satellite’s rotation accurately, additional errors will result 
in the reconstructed positions of control points. Therefore, 
the libration amplitude at the orbital period must be varied 
in order to minimize the reconstruction errors. 

Following this procedure, Thomas et al. (2016) obtained 
a best-fit physical libration amplitude of –0.120° (the minus 
sign indicates that the libration is out of phase by 180°) with 
a 2s uncertainty of 0.014°. This translates to 528 ± 60 m in 
surface displacement at the equator. The smallness of the 
uncertainty is a function of the fact that the control points 
are based on ellipses fitted to craters, permitting subpixel 
accuracy in their positions and, more importantly, the large 
number of data points (since the uncertainty goes as N–1/2). 

3.3.  Interior Modeling and Interpretation

Having measured the libration amplitude, we can now 
compute the satellite’s natural frequency via equation (34) 
and hence determine its dynamical triaxiality, (B–A)/C, via 
equation (35). The value corresponding to the observed li-
bration amplitude of 0.120° is (B–A)/C ≈ 0.0607. Although 
fixing this quantity does not yield a unique interior model, 
various simple trial models can be tested to determine the 
approximate internal structure.

Assuming a multi-layered body consisting of nested 
triaxial ellipsoids, the principal moments of inertia, defined 
in equation (3), become
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TABLE 4.  Dominant signals involved in the forced librations 
of Enceladus (Rambaux et al., 2010).

Period (days)	 Amplitude (deg)	 (wi/w0)2

	 1.37	 –0.028	 16.3
	 1418.93	 0.188	 1.5 × 10–5

	 4035.64	 0.259	 1.9 × 10–6

Because (wi/w0)2 is negligibly small for the longer-period librations, only 
the libration at the orbital period is significantly determined by the internal 
structure, via equation (35).



72      Enceladus and the Icy Moons of Saturn

where ai, bi, and ci are the semiaxes of the ith ellipsoid, and 
Dri is the density contrast between layer i and the layer 
above it. In the simplest case of a homogeneous interior, 
the dynamical triaxiality is simply

	
B A

C
a b
a b

 = 
+

2 2

2 2
 –  – 

	
(39)

Based on their shape model, in which a  = 256.2  km, 
and b = 251.4 km, Thomas et al. (2016) found that the li-
bration amplitude expected for a homogenous interior was 
~0.032° — more than 10s smaller than the observed value. 
In the case of a two-layer body, the triaxiality is given by
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where the subscripts c and s indicate the rocky core and the 
icy shell, respectively, V is the volume, and r is the density. 
Unlike the case of a homogeneous interior, models with two 
or more layers require additional assumptions about the 
shape and densities of each layer. The known bulk density 
(1609 kg m–3 for Enceladus) and the inferred moment of 
inertia factor constrain, via equations (1) and (2), the layer 
thicknesses such that the core radius can be computed once 
the layer densities are specified. Computing the shapes of 
internal layers is less straightforward but can be done in a 
number of ways. Thomas et al. (2016) and van Hoolst et al. 
(2016), for instance, integrate the Clairaut equation (Clai-
raut, 1743; Danby, 1988) to first order in terms of the polar 
and equatorial flattening to obtain expressions that depend 
only on the densities and mean radii of the layers, which 
can then be related to the semiaxes of the triaxial ellipsoidal 
shape (for details, see Tajeddine et al., 2014). Similarly, 
Tricarico (2014) describes methods for computing higher-
order nested ellipsoidal figures recursively or numerically in 
terms of polar and equatorial eccentricities, again, starting 
from the specified densities and mean radii of each layer. 

Making the assumption that the core shape conforms to 
the hydrostatic expectation (i.e., its surface is equipoten-
tial), and considering a range of ice shell densities between 
700 kg m–3 and 930 kg m–3, Thomas et al. (2016) determined 
that the libration amplitude for the two-layer model would 
be between 0.032° and 0.034°, still much smaller than the 
observed value. Thomas et al. further showed that a regional 
subsurface sea centered on the south pole has little effect on 
the libration amplitude because of its symmetry about the 
axis of rotation. Similar results were obtained by van Hoolst 
et al. (2016), confirming the incompatibility of the libration 
observations with interior models involving a core that is 
physically coupled to the icy mantle.

As another check, one can use the above dynamical tri-
axiality in combination with the observed sectorial gravity 
harmonic, C22 (Table 1), and equation (22) to compute the 

polar moment of inertia. The result is C ≈ 0.104M R2. This 
unrealistically small polar moment of inertia is not compat-
ible with the internal density structure inferred from the 
gravity observations [roughly 0.22M R2 (Iess et al., 2014; 
McKinnon, 2015)] and is another indication that Enceladus 
is not behaving like an entirely solid body.

The large observed libration amplitude evidently requires 
a more radically different interior model. Thomas et al. 
(2016) thus argued for a model with a global subsurface 
ocean that completely decouples the rocky core from the icy 
shell. In this case, the icy shell and the rocky core experience 
and respond to gravitational torques nearly independently. 
In the limit of a spherical core, for example, only the shell 
itself experiences external gravitational torques and, because 
the polar moment of inertia for the shell alone, Cs, is smaller 
than that of the body as a whole, C, the libration amplitude 
should be larger.

Thomas et al. (2016) and van Hoolst et al. (2016) applied 
a more generalized analysis, which includes the effects of 
torques between the shell and the core, as well as the effects 
of the ocean pressure on both the core and the shell. For a 
body with a subsurface ocean decoupling the shell from the 
core, the libration amplitude of the shell is given by (e.g., 
van Hoolst et al., 2009; Rambaux et al., 2011; Richard et 
al., 2014)
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where Ks, Kc, and Kint are the planet-shell, planet-core, and 
core-shell torques, respectively. The first two torques are 
functions of the moments of inertia of the shell and the core, 
as well as the ocean pressure on each layer; Kint depends 
on the densities and the dimensions of each layer; and w1 
and w2 are the system’s natural frequencies (for details, see 
Richard et al., 2014). 

This expression shows that the libration amplitude once 
again depends on the densities assumed for the internal lay-
ers as well as their shapes. Assuming hydrostatic figures for 
each layer and assuming the ice shell and ocean densities to 
be 850 kg m–3 and 1000 kg m–3, respectively, Thomas et al. 
(2016) found the best agreement with the observed librations 
for interior models with mean ice shell thicknesses in the 
range 21–26 km and mean ocean thicknesses in the range 
26–31 km. The densities of the ice shell and the core were 
adjusted (within the constraints noted above) to 850 kg m–3 
and 2300 kg m–3, respectively, in order to be consistent with 
the moment of inertia inferred from the gravity observations 
(Iess et al., 2014). Using similar methods, but considering 
different ranges of core, ice shell, and ocean densities (2158–
2829  kg  m–3, 900–1000  kg  m–3, and 950–1100  kg  m–3, 
respectively), and allowing for non-hydrostatic figures for 
the core and the ocean/ice interface, van Hoolst et al. (2016) 
obtained mean ice shell and ocean thicknesses in the ranges 
14–21 km and 24–67 km, respectively. 
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Although results vary slightly with the assumptions that 
go into such models, it is clear that the observed physi-
cal libration amplitude places powerful constraints on the 
internal structure. Most importantly, these libration studies 
demonstrate that the ice shell must be fully decoupled from 
the deeper interior, requiring the subsurface ocean to be 
global. Additionally, the libration studies provide a means 
of estimating the ice shell’s thickness in a manner that is 
independent from the gravity-based analysis discussed in 
section 2, increasing confidence in both approaches.

4.  ICE SHELL STRUCTURE AND DYNAMICS

4.1.  Structure

The structure of the ice shell is of particular interest be-
cause it bears on the thermal state of Enceladus, the means 
for supporting its topography, the mechanics of the major fis-
sures in the south polar region, and the nature of the ongoing 
eruptions. Determining the precise thickness of the ice shell, 
however, is not necessarily straightforward. For example, 
analysis of Enceladus’ gravity field (section 2) has yielded 
mean shell thickness estimates ranging from 20–40 km (Iess 
et al., 2014) at the low end, to 40–60 km (McKinnon, 2015) 
at the high end (although the latter estimate is based only 
on the degree-2 gravity). The large amplitude of the diurnal 
forced physical librations (section 3) (Thomas et al., 2016; 
van Hoolst et al., 2016), on the other hand, suggests a mean 
shell thickness of 15–25 km. The apparent discrepancy is 
not as problematic as it may seem, however, as it can be 
resolved in a number of ways involving details of the elastic/
isostatic compensation model (Čadek et al., 2016; Beuthe 
et al., 2016; Hemingway and Mittal, 2017), as discussed in 
section 2.3.3. 

What is common among the various models is that 
they take the long-wavelength topography to be related to 
lateral variations in the thickness of the icy shell, which is, 
to some degree, supported isostatically (i.e., it is “floating” 
on a subsurface ocean). Hence, the large topographic basin 
at the south pole implies a regional thinning of the ice 
shell, as predicted by Collins and Goodman (2007) based 
on the observed shape (Thomas et al., 2007) and the local-
ized geologic activity. The gravity observations (Iess et al., 
2014) confirmed this prediction by showing that the small 
magnitude of the corresponding south polar gravity anomaly 
implied substantial compensation (i.e., thinning at the base of 
the ice shell). Given the ~2-km topographic depression at the 
south pole (measured with respect to an equilibrium figure) 
(Nimmo et al., 2011), and making reasonable assumptions 
about the ice shell and ocean densities, the total crustal thin-
ning (relative to the mean shell thickness) at the south pole 
must be roughly 16–18 km, assuming complete Airy-type 
isostatic compensation (see equation (28) in section 2.3.3) 
(Čadek et al., 2016; Hemingway and Mittal, 2017). Since 
the shell thickness is evidently greater than zero at the 
south pole, this may be regarded as an approximate lower 

bound on the mean shell thickness. However, the precise 
amplitude of lateral shell thickness variations also depends 
on the assumed compensation model (i.e., pressure vs. force 
balance, inclusion of partial elastic support, lateral variations 
in crustal density, etc.) (Čadek et al., 2016; Hemingway and 
Matsuyama, 2017; Hemingway and Mittal, 2017; Tajeddine 
et al., 2017).

The various models also agree that the thickest part of the 
shell is around the equator, and especially near the sub- and 
anti-saturnian points, where the thickness may be 30–40 km, 
or even more, depending on the preferred compensation 
model (Čadek et al., 2016; Hemingway and Mittal, 2017). 
The overall pattern (Fig.  6) may be the result, at least in 
part, of tidal heating. Tidal dissipation is strongest at the 
poles and weaker in the equatorial regions (Ojakangas and 
Stevenson, 1989). The equilibrium shell thickness based 
on tidal dissipation and insolation results in a pattern with 
power at degrees 2 and 4 (Ojakangas and Stevenson, 1989; 
Hemingway and Mittal, 2017). Higher-order structure in 
the shell thickness variations may be a result of heteroge-
neities in the shell and/or mode coupling associated with 
non-Newtonian flow of the ice as it relaxes (Nimmo, 2004).

4.2.  Thermal and Mechanical Stability

The structure of the ice shell raises questions about the 
stability of the current configuration. Lateral shell thickness 
variations induce stresses that will tend to relax away those 
thickness variations over time, with the ice flowing from 
the thicker regions (i.e., the equator) to the thinner regions 
(i.e., the poles). The observed structure is thus stable only 
if the relaxation rate is counterbalanced by spatial variations 
in ice melting (associated with tidal dissipation) and ocean 
crystallization rates (e.g., Collins and Goodman, 2007; 
Kamata and Nimmo, 2017). The rate at which the deflected 
ice/ocean interface relaxes toward an equipotential surface 
is controlled by the viscosity structure of the ice shell. Fol-
lowing the approach of Lefevre et al. (2014), developed for 
Titan, Čadek et al. (2016) determined that the relaxation 
velocity remains smaller than a few centimeters per year 
only if the ice shell is conductive with a bottom viscosity of 
at least 1014−1015 Pa s. Counterbalancing such a relaxation 
rate requires heat flux variations between the equatorial and 
polar regions of at least 100–200 mWm–2, which is compa-
rable with the estimated heat flux in the SPT. 

It is also possible that the current configuration is 
transient, with the observed surface topography being the 
partially relaxed remnants of a previous state with larger 
thickness variations (Čadek et al., 2016). Čadek et al. (2017) 
have argued, using a viscoelastic relaxation model, that the 
observed surface topography may be presently relaxing 
toward a new equilibrium if Enceladus experiences changes 
in heat production and ice melting/ocean crystallization on 
timescales comparable to the relaxation timescale (which 
may range between 1 and 100  m.y. for lithospheric vis-
cosities between 1022 and 1024  Pa s). Indeed, the intense 
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surface activity in the south polar region is an indication 
of a dynamical world where the ice shell structure may be 
evolving on even shorter timescales.

4.3.  Implications

The sh ell thickness implies a small Rayleigh number, 
making convection unlikely and suggesting a thermally 
conductive ice shell. Heat fl ux, F, can be related to the 
temperature structure and thickness of a conductive ice 
shell according to
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where d is the shell thickness, Ts and Tb are the surface and 
basal temperatures, respectively, and where c is an empiri-
cally derived constant, taken to be 567 W/m (e.g., Klinger, 
1980; Nimmo, 2004). For an ice shell thickness of about 
30–40 km in the equatorial region, the diffusive heat fl ux 
typically ranges between 15 and 20 mWm–2. As the diffusive 
heat loss is inversely proportional to the ice shell thickness, 
cooling is even faster away from the equator, where the shell 
is thinner. For an average ice shell thickness between 20 and 
25 km, the total diffusive heat loss outside the SPT is about 
20 GW. In addition to the passive heat loss, one must also 
consider the heat loss associated with the intense activity 
at the south pole, which is estimated to be up to 15 GW 
(Howett et al., 2011). For ice shell thicknesses ranging be-

tween 3 and 5 km in the SPT, about 5 to 10 GW is lost just 
by thermal diffusion through the ice shell, with the rest of 
the power being associated with the eruption activity itself. 
In total, then, some ~35 GW must be generated to maintain 
the present-day state of Enceladus. 

Such a large power is consistent with the latest estimates of 
the dissipation function in Saturn (Lainey et al., 2012; Lainey, 
2016), which indicates that a strong dissipation (20 GW or 
even more) may be sustained during relatively long periods 
of time before the orbital eccentricity would be damped. 
However, the mechanism for generating such power within 
Enceladus is less clear (see the chapter in this volume by 
Nimmo et al.). Such heat production in the ice shell would 
require a very low bottom viscosity [<5 × 1013 Pa s (Roberts 
and Nimmo, 2008)], which would result in rapid relaxation of 
the basal topography, incompatible with the observed thick-
ness variations. On the other hand, for a bottom viscosity 
ranging between 1014 and 1015 Pa s, heat fl ow due to tidal 
dissipation in the conductive ice shell would barely exceed 
a few milliwatts per square meter (Roberts and Nimmo, 
2008; Čadek et al., 2016), too weak to counterbalance the 
diffusive heat loss and to prevent the ocean from freezing 
(the timescale to crystallize 10 km of ice in the thickest part 
of the ice shell is on the order of 10 m.y.). The present-day 
state may result from enhanced tidal dissipation due to higher 
eccentricities in the recent past, as suggested by Běhounková 
et al. (2012). This would imply that the ocean is presently 
crystallizing with a maximum crystallization rate in the equa-
torial region where tidal heating is at a minimum. 
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Fig. 6.   Lateral variations in ice shell thickness assuming complete Airy compensation 
of all known topography [up to spherical harmonic degree 8 (Nimmo et al., 2011)]. 
Contours indicate shell thickness in kilometers. In this example, the ice shell thick-
ness ranges from ~6 km at the south pole to ~36 km at the sub- and anti-saturnian 
points along the equator, with a mean thickness of 22 km. While the mean shell 
thickness is somewhat model-dependent, the amplitude of lateral variation does not 
vary signifi cantly among the models (e.g., Čadek et al., 2016; Hemingway and Mittal, 
2017). The addition of partial elastic support, however, would alter the amplitude of 
shell thickness variations, especially at the shortest wavelengths.
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An alternative solution would be strong dissipation in 
the deeper interior that counterbalances the diffusive heat 
loss through the ice shell. Two candidate processes would 
be dissipation of resonant tidal waves in the ocean (Tyler, 
2011; Matsuyama, 2014; Hay and Matsuyama, 2017) or 
tidal friction in the unconsolidated core (Roberts, 2015). The 
former process requires a thin ocean, contrary to the ocean 
thickness inferred by recent studies (Čadek et al., 2016; 
van Hoolst et al., 2016; Beuthe et al., 2016; Hemingway 
and Mittal, 2017). For the latter process, an unconsolidated 
rocky core filled with water ice, the power produced is too 
low (Roberts, 2015). Dissipation in a water-filled porous 
core might be more efficient, but more work is needed to 
demonstrate whether this would be sufficient to counterbal-
ance the diffusive heat loss. Interestingly, strong dissipation 
in the core may also provide the energy source to power 
the hydrothermal activity, as suggested by the detection of 
nanosilica emitted from Enceladus (Hsu et al., 2015), and 
to sustain long-term circulation of hot water in the core, as 
modeled by Travis and Schubert (2015).

An interesting consequence of the reduced ice shell thick-
ness in the SPT is a strong increase of tidal deformation and 
associated tidal friction. Compared to models with constant 
thickness of 25 km, the reduction in the SPT to less than 
5  km in thickness results in an amplification of the tidal 
stresses by a factor of 4 (Soucek et al., 2017). This is a 
consequence of the small size of Enceladus, which makes 
the amplitude of tidal deformation much more sensitive to 
the ice shell thickness than in larger moons like Europa and 
Titan, where tidal deformation depends only slightly on the 
ice shell thickness (Tobie et al., 2005). Soucek et al. (2016) 
have also demonstrated that the presence of faults further 
enhances the tidal deflections by at least a factor of 2. The 
resulting stress patterns are much more complex than those 
predicted from standard tidal deformation models based on 
a thin-shell approximation and neglecting the presence of 
faults (e.g., Hurford et al., 2007; Nimmo et al., 2007). En-
hanced tidal stresses in the SPT, together with lithospheric 
stresses resulting from ice shell melting and subsequent 
relaxation, may help explain the tectonic patterns observed 
in the SPT (e.g., Patthoff and Kattenhorn, 2011; Yin et al., 
2016). However, future modeling efforts are required to bet-
ter understand the complex interplay between the ice shell 
evolution and the tectonic patterns. 

5.  SUMMARY AND OPEN QUESTIONS

The Cassini mission has helped to answer many ques-
tions about the interior of Enceladus. In particular, as we 
discussed in this chapter, Cassini-derived measurements of 
the low-order gravity field and rotational dynamics have 
led to a good, albeit basic, understanding of the internal 
structure (Fig. 1). We now know, for instance, that Enceladus 
has a large, low-density core that is in contact with a global 
subsurface liquid water ocean containing some 107 km3 of 
water (section 2.3.4) — comparable to the volume of Earth’s 
Arctic Ocean. The icy shell that covers the ocean may be 

vanishingly thin at the south pole, but is at least a few tens 
of kilometers thick in the equatorial regions (Fig. 6).

Nevertheless, the thickness, structure, and dynamics of 
the ice shell are not yet sufficiently well constrained to give 
us a clear understanding of the thermal history and evolu-
tion of the interior. Is the current configuration stable, or 
are we seeing Enceladus in the midst of a transition? If the 
present configuration is stable, how is the long-wavelength 
topography maintained in spite of the relatively high tem-
peratures at the base of the ice shell? How and where is 
the internal heat generated, and can we match the predicted 
input power with the estimated heat loss? In the near term, 
additional modeling efforts may help to better address these 
questions. In the longer term, when spacecraft next visit 
Enceladus, and especially with dedicated missions that can 
orbit or even land on Enceladus, new observations — which 
may include higher-order gravity measurements, improved 
heat flow measurements, ice penetrating radar, and even 
seismology — are sure to be the most powerful drivers in 
advancing our understanding of the interior of Enceladus.
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